

Paul Melis
SURFsara Visualization group

paul.melis@surfsara.nl

(some slides courtesy of Robert Belleman, UvA)

Introduction to scientific
visualization with ParaView

Outline

● Introduction, pipeline and data model (10 min)

● ParaView overview & walk-through (5-10 min)

● ParaView hands-on (60 min)

● ParaView wrap-up (5 min)

ParaView
● General scientific visualization package

– Usable in many scientific fields

– 2D/3D datasets

– Data visualization & interactive exploration

– Image/animation rendering

– Not the best tool for:

● information visualization, GIS, web-based
visualizations

● Similar scientific visualization packages

– VisIt, MayaVi, DeVIDE (TU Delft)

– Knowledge about ParaView transfers mostly to
other packages

The scientific visualization pipeline

Haber and McNabb reference model

(after Haber, Robert B. & McNabb, David A., 1990, Visualization Idioms:
A Conceptual Model for Scientific Visualization Systems)

Enrichment Mapping RenderData source

raw data derived data visual object image
1.980000
0.027228
-0.013616
1.990000
0.038601
-0.015680
1.990000
0.050290
-0.017887
2.000000
0.062348
-0.020251
2.010000
…

files

Example: extracting a contour from
medical data

Contour Clip
Mapping
+ Render

DICOMReader

3D grid Polygon data Polygon data ImageDICOM
files

Filter #2Filter #1

Filter #4

Pipeline creation

● Filters are connected together to form a
“visualization pipeline” or “dataflow network”

– Filters have inputs, outputs and parameters
● Restrictions:

– Data types of connected input and output ports
must match

– Loops not allowed (i.e. directed acyclic graph)

Filter #5

Filter #3

(Arrow color indicates output data type)

Pipeline behaviour

● Filters in a pipeline only execute when necessary

– When a filter's input data has changed

– When a filter's parameter(s) have changed

● Data flows downstream, update checks flow upstream

● → On-demand local execution

Filter #2Filter #1 Filter #3

Data

Update checks

Data model

● Data sets are represented
by a mesh and attributes

Data model

● Data sets are represented
by a mesh and attributes

● A mesh consists of
interconnected points
in 2D/3D

Data model

● Data sets are represented
by a mesh and attributes

● A mesh consists of
interconnected points
in 2D/3D

● Collections of points
form cells (regions, zones)

Cell 1 Cell 2

Data model

● Data sets are represented
by a mesh and attributes

● A mesh consists of
interconnected points
in 2D/3D

● Collections of points
form cells (regions, zones)

● Points can have attributes

Data model

● Data sets are represented
by a mesh and attributes

● A mesh consists of
interconnected points
in 2D/3D

● Collections of points
form cells (regions, zones)

● Points can have attributes
● Cells can have attributes

Data model

● Data sets are represented
by a mesh and attributes

● A mesh consists of
interconnected points
in 2D/3D

● Collections of points
form cells (regions, zones)

● Points can have attributes
● Cells can have attributes
● Points define geometry, cells define topology

Rectilinear grid (a.k.a. “image data”)

● Regular 2D/3D grid
● Defined by

● Origin
● Spacing in X, Y and Z
● Dimensions in X, Y and Z

● Cells are always rectangular
● Examples:

● Images (2D)
● Medical scans (3D)
● Atmospheric/fluid simulations (2D/3D)

Adaptive mesh refinement

Point-based datasets

● No connectivity, only positions
● Per-point data

● Velocity
● Mass
● Etc.

● Cells are points
● Examples:

● N-body simulations
● LiDAR data
● Agent-based simulations

Polygonal data (surfaces)

● Thin surfaces
● Possibly closed
● Per-point and per-cell values
● Cells are triangles, quads, lines,

points, …
● Examples:

● Cell-based biological simulations
● Isosurfaces from medical scans
● Photogrammetry output

Unstructured grid

● Collection of different cells types
● “Bag of cells”

● No regular structure
● Last resort when previous dataset

types are not applicable
● Examples

● CFD meshes (tetrahedron cells)
● Polydata (previous slide) is a

form of unstructured grid
● Some ParaView filters produce

unstructured grids

ParaView GUI
and

basic functionality
(demo)

Hands-on preparation

● Step 1: Install ParaView 5.4 on your laptop
– We have a USB stick with Paraview + data files
– OR download from http://bit.ly/2tn868Q (will be faster than

downloading from www.paraview.org)
● Step 2: Download the data files

– Download .zip file from http://bit.ly/2rvX5kj (only 8MB)
– Unpack somewhere on your laptop

● (Optional) Step 3: Troubleshoot GPU rendering
● Or download through URLs listed in hand-out
● Ask us for help if needed

http://bit.ly/2tn868Q
http://www.paraview.org/
http://bit.ly/2rvX5kj

Hands-on!

● Until 11:30
● ParaView exercises

– Exercise 1: CT-scan of a head
● Data inspection, slices,

volume rendering, contouring

– Exercise 2: Tornado simulation
● CSV file reading, streamlines, glyphs,

coloring

– Exercise 3: Coral growth
● Time-varying datasets, camera orbiting

– Bonus exercise: A stationary fluid mixer
● Ask us for help if needed!

● Making movies (animation rendering)
● Python scripting

– Save/restore sessions
– Write your own filter
– Integration with NumPy and matplotlib

● And much more...

● User's Guide is freely available as PDF (239 pages)!

– It is included when downloading binaries
– Or see Kitware blog: http://www.kitware.com/blog

● See Kitware ParaView Tutorial
http://www.paraview.org/Wiki/The_ParaView_Tutorial

Topics not covered

http://www.kitware.com/blog
http://www.paraview.org/Wiki/The_ParaView_Tutorial

Getting data into ParaView?

● Lots of formats already supported by ParaView
– NetCDF, OpenFOAM, PLY, HDF5, ExodusII, ...

● See http://www.paraview.org/Wiki/ParaView/Users_Guide/List_of_readers

– .csv, .txt (Delimited text) – Loads as a table, need to do extra manual
steps

– Binary data without header, select “Raw (binary) file” type. Very limited
● When you're going to write the data yourself

– ParaView/VTK native formats
● Legacy” VTK file format or VTK/ParaView XML file format
● See http://www.vtk.org/VTK/img/file-formats.pdf
● Writing Legacy and XML files possible using VTK library instead of doing it “by

hand”

– HDF5 + XDMF
● See http://www.xdmf.org

http://www.paraview.org/Wiki/ParaView/Users_Guide/List_of_readers
http://www.vtk.org/VTK/img/file-formats.pdf

The end...

Legacy VTK versus XML-based

vtk DataFile Version 2.0

Volume example

ASCII

DATASET STRUCTURED_POINTS

DIMENSIONS 3 4 6

ASPECT_RATIO 1 1 1

ORIGIN 0 0 0

POINT_DATA 72

SCALARS volume_scalars char 1

LOOKUP_TABLE default

0 0 0 0 0 0 0 0 0 0 0 0

0 5 10 15 20 25 25 20 15 10 5 0

0 10 20 30 40 50 50 40 30 20 10 0

0 10 20 30 40 50 50 40 30 20 10 0

0 5 10 15 20 25 25 20 15 10 5 0

0 0 0 0 0 0 0 0 0 0 0 0

....

<VTKFile type=”StructuredGrid” ...>

 <StructuredGrid WholeExtent=”x1 x2 y1 y2 z1 z2”>

 <Piece Extent=”x1 x2 y1 y2 z1 z2”>

 <PointData>...</PointData>

 <CellData>...</CellData>

 <Points>...</Points>

 </Piece>

 </StructuredGrid>

</VTKFile>

Comparison

Legacy

● Pros

– Easy to write from your own software

– ASCII format is very easy to write

– Binary format is space-efficient

● Cons

– Not developed anymore

– ASCII format is space-inefficient

– Binary format slightly harder to write

– No support for parallel
reading/rendering

XML

● Pros

Probably more future-proof than legacy
format

– Optional data compression

– Possibility of parallel reading/rendering
for large datasets

● Cons

– Need to write XML-compliant files and
understand more complex file structure

– Not as compact as pure binary, due
base64 encoding of data

http://www.vtk.org/VTK/img/file-formats.pdfhttp://www.vtk.org/VTK/img/file-formats.pdf

http://www.vtk.org/VTK/img/file-formats.pdf
http://www.vtk.org/VTK/img/file-formats.pdf

ParaView pipeline

● Filter
– Operates on (one or more) input datasets
– Produces an output dataset
– Usually has a set of parameters
– Example operations:

● Clip, threshold, streamline

● Source
– Conceptually a filter with no inputs
– A loaded file (or set of files) becomes a source

source

filter

filter filter

filter

Myfile.dat

threshold

clip

streamline

ParaView/VTK data model

● Points
– 1D/2D/3D coordinates
– Describe the geometry of the data (i.e. spatial locations)

● Cells
– Cells refer to points
– Describe the topology of the data (i.e. connectedness)
– Cells are the things that ParaView visualizes

● Data can be associated with both points and cells
– E.g. temperature, pressure, flow direction and/or velocity
– Types of values:

● Scalar values (integer, floating-point)
● Vectors
● Strings
● (3x3 sym. tensors, 3D normals, texture coordinates, field data)

–

Why ParaView
(and why for this course)?

● Advantages
– Free & open-source
– Actively developed and supported by Kitware (a US company)
– Lots file formats and data operations (filters) supported
– Allows parallel visualization of large datasets
– For this course?

● GUI and workflow is pretty good, especially for interactively building a
visualization pipeline

● Concepts and operations in ParaView transfer easily to other packages like
VisIt or MayaVi, so provides good introduction to scivis methods

● Caveats
– It does have bugs in some areas, so...

● It might crash unexpectedly
● Annoying warning messages sometimes pop up

– Does not handle out-of-memory situations very well

Cell types

(Linear cell types)

Cells are the things
that ParaView visualizes!

SURFsara visualization group

● Hands on time!

– Time to start working on the exercises

– If you have questions, let us know

– Data:

– Software:

Paul Melis

Tijs de Kler

Casper
van Leeuwen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

