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Outline

● Introduction, pipeline and data model (10 min)

● ParaView overview & walk-through (5-10 min)

● ParaView hands-on (60 min)

● ParaView wrap-up (5 min)



 

ParaView
● General scientific visualization package

– Usable in many scientific fields 

– 2D/3D datasets 

– Data visualization & interactive exploration

– Image/animation rendering

– Not the best tool for:

● information visualization, GIS, web-based 
visualizations

● Similar scientific visualization packages

– VisIt, MayaVi, DeVIDE (TU Delft)

– Knowledge about ParaView transfers mostly to 
other packages 



 

The scientific visualization pipeline

Haber and McNabb reference model

(after Haber, Robert B. & McNabb, David A., 1990, Visualization Idioms:
A Conceptual Model for Scientific Visualization Systems)
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Example: extracting a contour from 
medical data

Contour Clip
Mapping 
+ Render

DICOMReader

3D grid Polygon data Polygon data ImageDICOM 
files



 

Filter #2Filter #1

Filter #4

Pipeline creation

● Filters are connected together to form a 
“visualization pipeline” or “dataflow network”

– Filters have inputs, outputs and parameters
● Restrictions:

– Data types of connected input and output ports 
must match

– Loops not allowed (i.e. directed acyclic graph)

Filter #5

Filter #3

(Arrow color indicates output data type)



 

Pipeline behaviour

● Filters in a pipeline only execute when necessary

– When a filter's input data has changed

– When a filter's parameter(s) have changed

● Data flows downstream, update checks flow upstream

● → On-demand local execution

Filter #2Filter #1 Filter #3

Data

Update checks



 

Data model

● Data sets are represented 
by a mesh and attributes
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Data model

● Data sets are represented 
by a mesh and attributes

● A mesh consists of 
interconnected points 
in 2D/3D 

● Collections of points 
form cells (regions, zones)

● Points can have attributes
● Cells can have attributes
● Points define geometry, cells define topology



 

Rectilinear grid (a.k.a. “image data”)

● Regular 2D/3D grid
● Defined by

● Origin
● Spacing in X, Y and Z
● Dimensions in X, Y and Z

● Cells are always rectangular
● Examples:

● Images (2D)
● Medical scans (3D)
● Atmospheric/fluid simulations (2D/3D)



 

Adaptive mesh refinement



 

Point-based datasets

● No connectivity, only positions
● Per-point data

● Velocity
● Mass
● Etc.

● Cells are points
● Examples:

● N-body simulations
● LiDAR data
● Agent-based simulations



 

Polygonal data (surfaces)

● Thin surfaces
● Possibly closed 
● Per-point and per-cell values
● Cells are triangles, quads, lines, 

points, …
● Examples:

● Cell-based biological simulations
● Isosurfaces from medical scans
● Photogrammetry output



 

Unstructured grid

● Collection of different cells types
● “Bag of cells”

● No regular structure
● Last resort when previous dataset 

types are not applicable
● Examples

● CFD meshes (tetrahedron cells)
● Polydata (previous slide) is a 

form of unstructured grid
● Some ParaView filters produce 

unstructured grids



 

ParaView GUI 
and 

basic functionality
(demo)



 

Hands-on preparation

● Step 1: Install ParaView 5.4 on your laptop
– We have a USB stick with Paraview + data files
– OR download from http://bit.ly/2tn868Q (will be faster than 

downloading from www.paraview.org)
● Step 2: Download the data files

– Download .zip file from http://bit.ly/2rvX5kj (only 8MB)
– Unpack somewhere on your laptop

● (Optional) Step 3: Troubleshoot GPU rendering
● Or download through URLs listed in hand-out
● Ask us for help if needed

http://bit.ly/2tn868Q
http://www.paraview.org/
http://bit.ly/2rvX5kj


 

Hands-on!

● Until 11:30
● ParaView exercises

– Exercise 1: CT-scan of a head
● Data inspection, slices,

volume rendering, contouring

– Exercise 2: Tornado simulation
● CSV file reading, streamlines, glyphs, 

coloring

– Exercise 3: Coral growth
● Time-varying datasets, camera orbiting

– Bonus exercise: A stationary fluid mixer
● Ask us for help if needed!



 

● Making movies (animation rendering)
● Python scripting

– Save/restore sessions
– Write your own filter
– Integration with NumPy and matplotlib

● And much more...

● User's Guide is freely available as PDF (239 pages)!

– It is included when downloading binaries
– Or see Kitware blog: http://www.kitware.com/blog

● See Kitware ParaView Tutorial
http://www.paraview.org/Wiki/The_ParaView_Tutorial

Topics not covered

http://www.kitware.com/blog
http://www.paraview.org/Wiki/The_ParaView_Tutorial


 

Getting data into ParaView?

● Lots of formats already supported by ParaView
– NetCDF, OpenFOAM, PLY, HDF5, ExodusII, ...

● See http://www.paraview.org/Wiki/ParaView/Users_Guide/List_of_readers

– .csv, .txt (Delimited text) – Loads as a table, need to do extra manual 
steps

– Binary data without header, select “Raw (binary) file” type. Very limited
● When you're going to write the data yourself

– ParaView/VTK native formats
● Legacy” VTK file format or VTK/ParaView XML file format
● See http://www.vtk.org/VTK/img/file-formats.pdf
● Writing Legacy and XML files possible using VTK library instead of doing it “by 

hand”

– HDF5 + XDMF
● See http://www.xdmf.org

http://www.paraview.org/Wiki/ParaView/Users_Guide/List_of_readers
http://www.vtk.org/VTK/img/file-formats.pdf


 

The end...



 

Legacy VTK versus XML-based

# vtk DataFile Version 2.0

Volume example

ASCII

DATASET STRUCTURED_POINTS

DIMENSIONS 3 4 6

ASPECT_RATIO 1 1 1

ORIGIN 0 0 0

POINT_DATA 72

SCALARS volume_scalars char 1

LOOKUP_TABLE default

0 0 0 0 0 0 0 0 0 0 0 0

0 5 10 15 20 25 25 20 15 10 5 0

0 10 20 30 40 50 50 40 30 20 10 0

0 10 20 30 40 50 50 40 30 20 10 0

0 5 10 15 20 25 25 20 15 10 5 0

0 0 0 0 0 0 0 0 0 0 0 0

....

<VTKFile type=”StructuredGrid” ...>

  <StructuredGrid WholeExtent=”x1 x2 y1 y2 z1 z2”>

    <Piece Extent=”x1 x2 y1 y2 z1 z2”>

      <PointData>...</PointData>

      <CellData>...</CellData>

      <Points>...</Points>

    </Piece>

  </StructuredGrid>

</VTKFile>



 

Comparison

Legacy

● Pros

– Easy to write from your own software

– ASCII format is very easy to write

– Binary format is space-efficient

● Cons

– Not developed anymore

– ASCII format is space-inefficient

– Binary format slightly harder to write

– No support for parallel 
reading/rendering

XML

● Pros

Probably more future-proof than legacy 
format

– Optional data compression

– Possibility of parallel reading/rendering 
for large datasets

● Cons

– Need to write XML-compliant files and 
understand more complex file structure

– Not as compact as pure binary, due 
base64 encoding of data

http://www.vtk.org/VTK/img/file-formats.pdfhttp://www.vtk.org/VTK/img/file-formats.pdf

http://www.vtk.org/VTK/img/file-formats.pdf
http://www.vtk.org/VTK/img/file-formats.pdf


 

ParaView pipeline

● Filter
– Operates on (one or more) input datasets
– Produces an output dataset
– Usually has a set of parameters
– Example operations:

● Clip, threshold, streamline

● Source
– Conceptually a filter with no inputs
– A loaded file (or set of files) becomes a source

source

filter

filter filter

filter

Myfile.dat

threshold

clip

streamline



 

ParaView/VTK data model

● Points
– 1D/2D/3D coordinates
– Describe the geometry of the data (i.e. spatial locations)

● Cells
– Cells refer to points 
– Describe the topology of the data (i.e. connectedness)
– Cells are the things that ParaView visualizes

● Data can be associated with both points and cells
– E.g. temperature, pressure, flow direction and/or velocity
– Types of values:

● Scalar values (integer, floating-point)
● Vectors
● Strings
● (3x3 sym. tensors, 3D normals, texture coordinates, field data)

–



 

Why ParaView 
(and why for this course)?

● Advantages
– Free & open-source
– Actively developed and supported by Kitware (a US company)
– Lots file formats and data operations (filters) supported
– Allows parallel visualization of large datasets
– For this course?

● GUI and workflow is pretty good, especially for interactively building a 
visualization pipeline

● Concepts and operations in ParaView transfer easily to other packages like 
VisIt or MayaVi, so provides good introduction to scivis methods

● Caveats
– It does have bugs in some areas, so...

● It might crash unexpectedly
● Annoying warning messages sometimes pop up

– Does not handle out-of-memory situations very well



 

Cell types

(Linear cell types)

Cells are the things 
that ParaView visualizes!



 

SURFsara visualization group

● Hands on time!

– Time to start working on the exercises

– If you have questions, let us know

– Data:

– Software: 

Paul Melis

Tijs de Kler

Casper 
van Leeuwen
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