
HIGH PERFORMANCE 
MACHINE LEARNING
Caspar van Leeuwen
High Performance ML consultant
SURF



Parallel computing for Deep Learning

Content

benefits of parallellization

parallellization strategies 

Hands-on: hyperparameter grid search on an HPC system

parallel stochastic gradient descent (SGD)

synchronous and asynchronous parallel SGD

communication backends

frameworks for distributed deep learning

documentation of distributed DL frameworks

4



Parallel computing for Deep Learning

Goal: understand the documentation of distributed DL frameworks.

From TensorFlow docs on “distribution strategy”:

• “tf.distribute.Strategy intends to cover a number of use cases along different axes… 
Synchronous vs asynchronous training: These are two common ways of distributing training 
with data parallelism. In sync training, all workers train over different slices of input data in 
sync, and aggregating gradients at each step. In async training, all workers are independently 
training over the input data and updating variables asynchronously. Typically sync training is 
supported via all-reduce and async through parameter server architecture.”

• “MultiWorkerMirroredStrategy currently allows you to choose between two different 
implementations of collective ops. CollectiveCommunication.RING implements ring-based 
collectives using gRPC as the communication layer. CollectiveCommunication.NCCL uses 
Nvidia's NCCL to implement collectives.”

5



Parallelization: why?

6

5 years @ 1 A100 GPU



Parallelization: why?

Faster trainings …

• Enables learning on larger datasets

• Enables improved accuracy through better hyperparemeter tuning

• Enables larger, more complex models

• …

Bigger models (high memory requirement) …

• Enables larger, more complex models

7



Parallelization: when?

8

BENCHMARKS

MLPerf, others

Model + Activations Memory

In
p

u
t 

S
iz

e

LargeSmall

Small

VGG-16

Novartis:

M-CNN, 

(BS=8), 

1280x1024

Benchmark

ImageNet: 

224x224 Google: Transformer-

LT

Eng-French, (BS-64)

5.9B Parameters; Mem-

Est

Oil-Gas

Seismic 

Images 

(>4K^3)

BS=6

DellEMC:

Transformer-LT Big (Eng-Ger),(BS=64)

Netherlands Kancer Inst (NKI): P-GANS, (BS=1)

500x500x500

Source: Kushal Datta & Vikram Saletore, AIPG, 

Intel

Large

CERN: 3D-

GANs, 

(BS=128), 

25x25x25
1MB

10MB

100MB

1GB

10GB

100GB

0.1MB

100MB 1GB
10GB

100GB 1000GB 10TB

GENCI/CINES:

Pl@ntNet, 

(BS=16),

224x224

DellEMC, AI Radiologist: ResNet-59, (BS=64)

896x896

MaxPlanck

MS-D CNN 

(BS=1), 

Inference, 

2304x1280x1024

)

Radboud UMC

Histopathology

100Kx200K

DellEMC, AI Radiologist: AmoebaNet(2,512), (BS=64),

480x480

GoogleNet

R
N

e
t-

5
0

R
N

e
t-

1
0
1

In
c
e
p
ti
o

n
-v

3



Parallelization: the basics

What is parallel computing?

• Multiple processors or computers working on a single computational problem

9



Parallelization: the basics

Serial computing

10

Processor
Apply filter()

Data Output



Parallelization: the basics

Parallel computing

11

Processor
Apply filter()

Data Output

Processor
Apply filter()

Processor
Apply filter()

Processor
Apply filter()



Parallelization: the basics

Benefits:

• Solve computationally intensive problems (speedup)

• Solve problems that don’t fit a single memory (multiple computers)

Requirements:

• Problem should be divisible in smaller tasks

12



Types of parallelization

What types of parallelization exist?

• Instruction level parallelism

• Embarrassingly parallel

• Data parallel

• Tensor parallel

• Model parallelism

• Hybrid data/Tensor parallelism

• Pipeline parallelism

13

Increasing complexity

https://huggingface.co/transformers/v4.9.2/parallelism.html

https://huggingface.co/transformers/v4.9.2/parallelism.html


Types of parallelization

• Instruction level parallelism

• Executing multiple instructions (e.g. additions) in parallel

• Examples: vector instructions (CPU), Tensor Cores (GPU)

• https://en.wikipedia.org/wiki/Instruction-level_parallelism

• More this afternoon!

14

1.1 3.7 -1.6 2.3

-3.4 1.7 -0.2 5.2

X =

Y = 

-2.3 5.4 -1.8 7.5=+

https://en.wikipedia.org/wiki/Instruction-level_parallelism


Types of parallelization

• Embarrassingly parallel

• A workload or problem where little or no effort is needed to separate into 
number of parallel tasks

• Examples: hyperparameter grid search, training multiple model architectures

• https://en.wikipedia.org/wiki/Embarrassingly_parallel

15

https://en.wikipedia.org/wiki/Embarrassingly_parallel


Data Parallelism

Train a single model, single set of hyperparameters, but faster

• Split the batch over multiple processors (CPUs/GPUs)

• Each processor holds a copy of the model

• Forward pass: calculated by each of the workers

• Backward pass: gradients computed (per worker), communicated and aggregated

16

Processor 1

Processor 2



Tensor parallelism

Train a single very big model, single set of hyperparameters

• Split (a single layer, i.e. tensor of) the model over multiple processors (CPUs/GPUs)

• Each processor sees all the data

• Communication needed both during forward and backward pass!

17

Processor 1

Processor 2



Hybrid Tensor/data parallelism

18

Processor 3

Processor 4

Processor 1

Processor 2



Model parallelism

Train a single very big model, single set of hyperparameters

• Split the model (by layer) over multiple processors (CPUs/GPUs)

• Communication needed both during forward and backward pass!

19

Processor 1 Processor 2



Pipeline (model) parallelism

• Model parallelism, executed in a pipelined fashion over multiple micro-batches.

• More efficient than model parallelism: hides communication with computation

• E.g. Gpipe (for PyTorch / TensorFlow), PipeDream (PyTorch)

• See https://pytorch.org/docs/stable/pipeline.html

20 Huang et al. (2019, arXiv:1811.06965)

https://arxiv.org/abs/1811.06965


What type of parallelism is applicable?

• Multiple (independent) training runs => Embarrassingly parallel

• Single model takes too long too train => Data parallel

• Single model is too big for memory => Tensor / Model / Pipeline parallelism

• Single model is too big for memory and takes too long to train => Hybrid parallelism

• All of the well-known, big models (GPT-X) are trained this way

21



What type of parallelism is applicable?

• Multiple (independent) training runs => Embarrassingly parallel

• Single model takes too long too train => Data parallel

• Single model is too big for memory => Tensor / Model / Pipeline parallelism

• Single model is too big for memory and takes too long to train => Hybrid parallelism

• All of the well-known, big models (GPT-X) are trained this way

22

Any cluster will do, no 
fast network needed



What type of parallelism is applicable?

• Multiple (independent) training runs => Embarrassingly parallel

• Single model takes too long too train => Data parallel

• Single model is too big for memory => Tensor / Model / Pipeline parallelism

• Single model is too big for memory and takes too long to train => Hybrid parallelism

• All of the well-known, big models (GPT-X) are trained this way

23

HPC cluster needed, i.e. with fast network and fast 
connections between e.g. GPUs in a single node



What type of parallelism is applicable?

• Multiple (independent) training runs => Embarrassingly parallel

• Single model takes too long too train => Data parallel

• Single model is too big for memory => Tensor / Model / Pipeline parallelism

• Single model is too big for memory and takes too long to train => Hybrid parallelism

• All of the well-known, big models (GPT-X) are trained this way

Note: use data parallel whenever you can. Use model / Pipeline parallel if you really
need to. Even then, consider alternatives:

• Model pruning

• Use different hardware architecture (e.g. data parallel @ CPU)

• Reduced precision datatypes (discussed later today)

24



Hands-on: hyperparameter grid search on an HPC system

In this hands-on, we will do a grid search on batch size & learning rate.

We will use a feature of the SLURM scheduler to submit an array job. This job runs the 
same job script multiple times, but with one essential difference: the 
SLURM_ARRAY_TASK_ID environment variable is different for each element of the 
array job. We use this as an index to our array in array_config.txt to make 
each task do something different.

Exercise

Submit the array.batch job. While it is running, inspect the
array_config.txt and array.batch to see if you can understand what is
going on. Once finished, inspect the output. How many output files do you have? 

25



Data parallel stochastic gradient descent

• Most networks are trained using stochastic gradient descent (SGD)

• Distributed stochastic gradient can be done in two ways

• Synchronous SGD

• Asynchronous SGD

26



Stochastic gradient descent (SGD)

SGD: find optimum by following the slope

𝑤 = 𝑤 − 𝜂𝛻Q(w)

w = weights, 𝜂 = learning rate, 𝛻Q(w) = gradient for current batch.

27

𝑊2

𝑊1

𝑊3



Data parallel synchronous SGD

• Each device (j) computes the gradients (𝛻Qj w ) based on its own batch!

• Needs to be aggregated before updating weights

28

Device 1
𝑔1 = 𝛻Q1(w)

Device 2
𝑔2 = 𝛻Q2(w)

Device 3
𝑔1 = 𝛻Q3(w)

Device 4
𝑔1 = 𝛻Q4(w)

𝛻Q w =෍
𝑗
𝛻Qj w

𝑤 = 𝑤 − 𝜂𝛻Q(w)



Data parallel synchronous SGD

Effect on batch size:

• For N workers that each see n examples: batch size effectively n × N.

• Larger batch => generally needs to be compensated by higher learning rate.

• No exact science!

• Some use 𝜂𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = 𝜂𝑠𝑒𝑟𝑖𝑎𝑙 ⋅ 𝑁

• Some use 𝜂𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 = 𝜂𝑠𝑒𝑟𝑖𝑎𝑙 ⋅ 𝑁

• Experiment!

29



Data parallel synchronous SGD

A different view…

30

Worker 1

Worker 2

Time Synchronization
barrier

Forward pass

N
Backward pass, 
compute gradient of layer N

N
Backward pass, 
communicate gradient N

N

N

N-1 … 1

N-1 … 1

N

N

N-1 … 1

N-1 … 1

Wait

Pro tip:
- Overlap communication and computation 
(don’t waste compute cycles waiting for 
communication!)
- Most (distributed) DL frameworks already 
take care of this for you ☺

Pro tip 2:
- Penalty for synchronous SGD: you 

have to wait for the slowest 
worker, before next iteration. 

- Make sure all workers are equally 
fast!



Decentralized data parallel synchronous SGD

Gradients are communicated and aggregated by all workers 

31

Worker 1 Worker 2

Worker 3

𝛻Q1+ 𝛻Q2+ 𝛻Q3𝛻Q1+ 𝛻Q2+ 𝛻Q3

𝛻Q1+ 𝛻Q2+ 𝛻Q3

𝛻Q2

𝛻Q1

𝛻Q2
𝛻Q1

𝛻Q3
𝛻Q3



Centralized data parallel synchronous SGD

There is also an alternative, where a parameter server is used to aggregate the 
gradients, and distribute the updated model:

32

Worker 1 Worker 2

Worker 3

𝛻Q1+ 𝛻Q2+ 𝛻Q3

Parameter 
server

𝛻Q3

𝛻Q1

𝑤

𝛻Q2

𝑤

𝑤



Centralized vs decentralized

• Centralized approach does not scale well: parameter servers create a 
communication bottleneck

• More info, see e.g. https://arxiv.org/pdf/1705.09056.pdf

33

https://arxiv.org/pdf/1705.09056.pdf


Communicating gradients…

Ok, so the most widely accepted approach is

distributed…

data parallel…

synchronous…

SGD…

… but how do distributed deep learning frameworks aggregate their gradients in such a 
setup?

37



A bit of history

‘Traditionally’ a lot of machine learning was not done in an HPC context. As a result:

• Most frameworks had little focus on distributed learning

• Most frameworks that offered distributed learning were based on parameter 
servers

• Most AI experts probably never heard of MPI...

38



The Message Passing Interface (MPI)

MPI is a standard for parallelization on a distributed memory system

• Distributed memory system: processors can’t access each other’s memory

• Explicit communication (over a network) is required between one memory and 
another to work on the same task

• MPI is the ‘language’ of this communication

• MPI is the de facto standard for traditional HPC applications

39



The Message Passing Interface (MPI)

MPI has routines to send data between individual workers…

40



The Message Passing Interface (MPI)

But also to broadcast data to other workers…

41



The Message Passing Interface (MPI)

And most importantly (for deep learning): apply collective operations, such as 
‘allreduce’. This operation is widely used in distributed deep learning to aggregate 
gradients!

42

A

B

C

D

P0

P1

P2

P3

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

P0

P1

P2

P3

AllReduce



The Message Passing Interface (MPI)

• MPI is a standard: it defines what AllReduce should do, not how it should be done.

• MPI libraries implement MPI functions. These libraries decide how it should be 
done. 

• Example: an inefficient allreduce operation could implemented like this:

43

A

B

C

D

P0

P1

P2

P3

A+B+C+DP0 A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

P0

P1

P2

P3



Relevance of MPI for distributed deep learning

Why is this relevant?

• Distributed DL frameworks often support multiple communication backends for 
their collective allreduce operations

• These backends often either implement (part of) the MPI API or something similar

• It is important to pick a communication backend with an efficient implementation.

• The most efficient implementation may vary per hardware.

• Example: Nvidia’s NCCL library implements a subset of MPI collective operations. 
These implementations are highly optimized for Nvidia GPUs.

44



MPI / NCCL

• MPI often used to communicate gradients

• MPI_AllReduce aggregates and sums gradients (remember: 𝛻Q w = σ𝑗 𝛻Qj w )

• NVIDIA’s NCCL library contains an implementation of MPI routines optimized for 
GPU  GPU communication

45

A

B

C

D

P0

P1

P2

P3

A+B+C+D

A+B+C+D

A+B+C+D

A+B+C+D

P0

P1

P2

P3

MPI_AllReduce



Frameworks for distributed learning

• TensorFlow’s tf.distribute: quite tricky to program. Lot’s of code changes needed from serial 
to distributed (https://www.tensorflow.org/guide/distributed_training)

• TensorFlow + Horovod: serial => distributed with minimal code changes 
(https://horovod.readthedocs.io/en/stable/tensorflow.html)

• PyTorch’s torch.distributed (https://pytorch.org/tutorials/intermediate/dist_tuto.html)

• PyTorch + Horovod: serial => distributed with minimal code changes 
(https://horovod.readthedocs.io/en/stable/pytorch.html)

• PyTorch Lightning: hides a lot of boiler plate code (also nice for serial training). Very little 
changes needed between serial & parallel execution, especially on a SLURM cluster 
(https://pytorch-lightning.readthedocs.io/en/latest/clouds/cluster.html#slurm-managed-
cluster)

46

https://www.tensorflow.org/guide/distributed_training
https://horovod.readthedocs.io/en/stable/tensorflow.html
https://pytorch.org/tutorials/intermediate/dist_tuto.html
https://horovod.readthedocs.io/en/stable/pytorch.html
https://pytorch-lightning.readthedocs.io/en/latest/clouds/cluster.html#slurm-managed-cluster
https://pytorch-lightning.readthedocs.io/en/latest/clouds/cluster.html#slurm-managed-cluster


Hands-on: data parallel with torch.distributed and PyTorch 
Lightning
• Submit the ddp.batch and ddp_lightning.batch jobs

• Inspect the code that they run: mnist_classify_ddp.py and 
mnist_classify_ddp_lightning.py. Can you see the advantage that 
PyTorch Lightning offers? Can you think of any disadvantages?

47



Recap of goal: understand docs of DL frameworks

From TensorFlow docs on “distribution strategy”:

• “tf.distribute.Strategy intends to cover a number of use cases along different axes… 
Synchronous vs asynchronous training: These are two common ways of distributing training 
with data parallelism. In sync training, all workers train over different slices of input data in 
sync, and aggregating gradients at each step. In async training, all workers are independently 
training over the input data and updating variables asynchronously. Typically sync training is 
supported via all-reduce and async through parameter server architecture.”

• “MultiWorkerMirroredStrategy currently allows you to choose between two different 
implementations of collective ops. CollectiveCommunication.RING implements ring-based 
collectives using gRPC as the communication layer. CollectiveCommunication.NCCL uses 
Nvidia's NCCL to implement collectives.”

48



Practical tips & take home messages

• If increased throughput is the goal, use data parallelism

• If a large model is the goal, use model (or hybrid or pipeline) parallelism, but 
consider the consequences (slower training) and alternatives (model pruning, CPU-
based training, etc)

• Account for the difference in convergence behavior of data parallel SGD, e.g. by 
adjusting & experimenting with the learning rate.

• Synchronous parallel SGD is the most common approach for distributed learning, 
because it is well understood. Asynchronous parallel SGD can scale very well, but 
convergence behavior is less clear.

• Use an efficient backend for collective communications (e.g. NCCL)

49



Further reading

Distributed TensorFlow using Horovod: 
https://towardsdatascience.com/distributed-tensorflow-using-horovod-
6d572f8790c4

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency 
Analysis: https://arxiv.org/pdf/1802.09941.pdf

Prace best practice guide for Deep Learning: http://www.prace-ri.eu/IMG/pdf/Best-
Practice-Guide-Deep-Learning.pdf

Technologies behind Distributed Deep Learning: 
https://preferredresearch.jp/2018/07/10/technologies-behind-distributed-deep-
learning-allreduce/

PyTorch Distributed: https://pytorch.org/tutorials/beginner/dist_overview.html and 
https://pytorch.org/docs/stable/distributed.html

50

https://towardsdatascience.com/distributed-tensorflow-using-horovod-6d572f8790c4
https://towardsdatascience.com/distributed-tensorflow-using-horovod-6d572f8790c4
https://arxiv.org/pdf/1802.09941.pdf
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Deep-Learning.pdf
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Deep-Learning.pdf
https://preferredresearch.jp/2018/07/10/technologies-behind-distributed-deep-learning-allreduce/
https://preferredresearch.jp/2018/07/10/technologies-behind-distributed-deep-learning-allreduce/
https://pytorch.org/tutorials/beginner/dist_overview.html
https://pytorch.org/docs/stable/distributed.html

	Template-set voorbeeld indelingen
	Slide 1
	Slide 4: Parallel computing for Deep Learning
	Slide 5: Parallel computing for Deep Learning
	Slide 6: Parallelization: why?
	Slide 7: Parallelization: why?
	Slide 8: Parallelization: when?
	Slide 9: Parallelization: the basics
	Slide 10: Parallelization: the basics
	Slide 11: Parallelization: the basics
	Slide 12: Parallelization: the basics
	Slide 13: Types of parallelization
	Slide 14: Types of parallelization
	Slide 15: Types of parallelization
	Slide 16: Data Parallelism
	Slide 17: Tensor parallelism
	Slide 18: Hybrid Tensor/data parallelism
	Slide 19: Model parallelism
	Slide 20: Pipeline (model) parallelism
	Slide 21: What type of parallelism is applicable?
	Slide 22: What type of parallelism is applicable?
	Slide 23: What type of parallelism is applicable?
	Slide 24: What type of parallelism is applicable?
	Slide 25: Hands-on: hyperparameter grid search on an HPC system
	Slide 26: Data parallel stochastic gradient descent
	Slide 27: Stochastic gradient descent (SGD)
	Slide 28: Data parallel synchronous SGD
	Slide 29: Data parallel synchronous SGD
	Slide 30: Data parallel synchronous SGD
	Slide 31: Decentralized data parallel synchronous SGD
	Slide 32: Centralized data parallel synchronous SGD
	Slide 33: Centralized vs decentralized
	Slide 37: Communicating gradients…
	Slide 38: A bit of history
	Slide 39: The Message Passing Interface (MPI)
	Slide 40: The Message Passing Interface (MPI)
	Slide 41: The Message Passing Interface (MPI)
	Slide 42: The Message Passing Interface (MPI)
	Slide 43: The Message Passing Interface (MPI)
	Slide 44: Relevance of MPI for distributed deep learning
	Slide 45: MPI / NCCL
	Slide 46: Frameworks for distributed learning
	Slide 47: Hands-on: data parallel with torch.distributed and PyTorch Lightning
	Slide 48: Recap of goal: understand docs of DL frameworks
	Slide 49: Practical tips & take home messages
	Slide 50: Further reading


