
GPU PROGRAMMING
HPC courses
UvA, June 2014

Ana Lucia Varbanescu
A.L.Varbanescu@uva.nl

Graphics in 1980
2

Graphics in 2000
3

Realism of modern GPUs

http://www.youtube.com/watch?
v=bJDeipvpjGQ&feature=pla
yer_embedded#t=49s

Courtesy
techradar.com

4

TODO List
5

1.  Multi and many-core hardware
2.  GPGPUs
3.  CUDA
4.  Advanced CUDA
5.  (some) OpenCL

Multi-cores = Intel processors with multiple,
homogeneous cores
Many-cores = GPUs & alikes

Why many-cores? -1

Moore’s Law

¤ Gordon Moore (co-founder of Intel) predicted in 1965
that the transistor density of semiconductor chips would
double roughly every 18 months.

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year ... Certainly over the short term this rate can
be expected to continue, if not to increase....” Electronics Magazine 1965

7

Transistor Counts (Intel)
8

Revolution in Processors

¨  Chip density is
continuing to
increase about 2x
every 2 years

¨  BUT
¤ Clock speed is not
¤  ILP is not
¤ Power is not

9

New ways to use transistors
10

¨  Parallelism on-chip: multi-core processors

¨  “Multicore revolution”
¤ Every machine will soon be a parallel machine
¤ What about performance?

¨  Can applications use this parallelism?
¤ YES, many have to be rewritten from scratch!

¨  Will all programmers have to be parallel
programmers?
¤ YES, implicit or explicit!

Top500 [1/4]
11

¨  State of the art in HPC (top500.org)
¤ Trial for all new HPC architectures

Accelerated!

Accelerated!

195 cores/node!

Top500: cores per socket
12

Top500: Accelerators
13

China's Tianhe-1A

#10 in top500 list – June 2013 (#1 in Top500 in November 2010)

4.701 pflops peak

2.566 pflops max

14,336 Xeon X5670 processors

7168 Nvidia Tesla M2050 GPUs x 448 cores = 3,211,264 cores

14

China's Tianhe-2

#1 in Top500 – June 2013

54.902 pflops peak

33.862 pflops max

16.000 nodes = 16.000 x (2 x Xeon IvyBridge + 3 x Xeon Phi)

 = 3.120.000 cores (=> 195 cores/node)

15

Top500: prediction
16

GPUs vs. Top500
17

T12

NV30 NV40
G70

G80

GT200

3GHz Dual
Core P4

3GHz Core2
Duo

3GHz Xeon
Quad

GPUs vs. CPUs
18

GPUs vs CPUs
19

Why do we need many-cores?

¨  Performance
¤ Large scale parallelism

¨  Power Efficiency
¤ Use transistors more efficiently

¨  Price (GPUs)
¤ Game market is huge, bigger than Hollywood
¤ Mass production, economy of scale
¤ “spotty teenagers” pay for our HPC needs!

¨  Prestige
¤ Reach ExaFLOP by 2019

20

GPUs = the hardware
GPGPU = general purpose GPU

History 0

GPGPU History
22

¨  Current generation: NVIDIA Kepler
¤ 7.1B transistors
¤ More cores, more parallelism, more performance

1995 2000 2005 2010

RIVA 128
3M xtors

GeForce® 256
23M xtors

GeForce FX
125M xtors

GeForce 8800
681M xtors

GeForce 3
60M xtors

“Fermi”
3B xtors

GPGPU History
23

¨  Use Graphics primitives for HPC
¤  Ikonas [England 1978]
¤ Pixel Machine [Potmesil & Hoffert 1989]
¤ Pixel-Planes 5 [Rhoades, et al. 1992]

¨  Programmable shaders, around 1998
¤ DirectX / OpenGL
¤ Map application onto graphics domain!

¨  GPGPU
¤ Brook (2004), Cuda (2007), OpenCL (Dec 2008), ...

Another GPGPU history
24

GPUs @ AMD
25

GPU @ ARM
26

 The hardware 1

Integration into host system
28

n  Typically PCI Express 2.0 x16
n  Theoretical speed 8 GB/s

n  protocol overhead → 6 GB/s

n  In reality: 4 – 6 GB/s
n  V3.0 recently available

n  Double bandwidth
n  Less protocol overhead

Lessons from the graphics pipeline
29

¨  Throughput is the main focus
¤ must paint every pixel within frame time
¤  scalability

¨  Create, run, and retire lots of threads very rapidly
¤ measured 14.8 billion thread/s on increment() kernel

¨  Use multithreading to hide latency
¤ 1 stalled thread is OK if 100 are ready to run

Key GPU architectural ideas
30

¨  Data parallel, like a vector machine
¤  There, 1 thread issues parallel vector instructions

¨  SIMT (Single Instruction Multiple Thread) execution
¤ Many threads work on a vector, each on a different element
¤  They all execute the same instruction
¤ HW automatically handles divergence

¨  Hardware multithreading
¤ HW resource allocation & thread scheduling
¤ HW relies on threads to hide latency
¤ Context switching is (practically) free

CPU vs. GPU
31

¨  Different goals produce different designs
¤ GPU assumes work load is highly parallel
¤ CPU must be good at everything, parallel or not

¨  CPU: minimize latency experienced by 1 thread
¤ big on-chip caches
¤  sophisticated control logic

¨  GPU: maximize throughput of all threads
¤ # threads in flight limited by resources => lots of

resources (registers, etc.)
¤ multithreading can hide latency => no big caches
¤  share control logic across many threads

Chip area CPU vs GPU
32

Control

ALU ALU

ALU ALU

Cache

CPU

GPU

It's all about the memory

33

core Memory channel

core core

core core

core core

core core

core core

core core

core core

core core

Memory channel

CPU many-core

CPU vs GPU
34

¨  Movie
¨  The Mythbusters

¤ Jamie Hyneman & Adam Savage
¤ Discovery Channel

¨  Appearance at NVIDIA’s NVISION 2008

ATI GPUs 35

Latest generation ATI
36

¨  Southern Islands
¨  1 chip: HD 7970

¤ 2048 cores
¤ 264 GB/sec memory bandwidth
¤ 3.8 Tflops single, 947 Gflops double precision
¤ Maximum power: 250 Watts
¤ 399 euros!

¨  2 chips: HD 7990
¤ 4096 cores, 7.6 Tflops

¨  Note: the entire 36-node DAS-4 TUD cluster has 2.2
Tflops

ATI programming models
37

¨  Low-level: CAL (assembly)
¨  High-level: Brook+

¤ Originally developed at Stanford University
¤ Streaming language
¤ Performance is not great

¨  Now
¤ OpenCL

¨  Near future
¤ HSA – Heterogeneous System Architecture
¤ HSAIL – HSA Intermediate Language
¤ Targeted at Fusion devices, single source code

GPU Hardware: NVIDIA 38

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

Fermi
39

¨  Consumer: GTX 480, 580
¨  HPC: Tesla C2050

¤ More memory, ECC
¤  1.0 Tlop SP
¤  515 GFlop SP

¨  16 streaming
multiprocessors (SM)
¤ GTX 580: 16
¤ GTX 480: 15
¤ C2050: 14

¨  SMs are independent
¨  768 KB L2 cache

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

Fermi Streaming Multiprocessor (SM)
40

¨  32 cores per SM
(512 cores total)

¨  64KB configurable
L1 cache / shared memory

¨  32,768 32-bit registers

CUDA Core Architecture
41

¨  Decoupled floating point
and integer data paths

¨  Double precision throughput
is 50% of single precision

¨  Integer operations
optimized for extended
precision
¤  64 bit and wider data

element size

¨  Predication field for all
instructions

¨  Fused-multiply-add

Memory Hierarchy
42

¨  Configurable L1 cache per SM
¤ 16KB L1 cache / 48KB Shared
¤ 48KB L1 cache / 16KB Shared

¨  Shared 768KB L2 cache
registers

Device memory

L1 cache / shared mem

L2 cache

Host memory
PCI-e
bus

Thread

Per-thread
Local Memory

SM

Per-SM
Shared
Memory

Kernel 0

Multiple Memory Scopes
43

¨  Per-thread private
memory
¤ Each thread has its own

local memory
¤ Stacks, other private

data, registers

¨  Per-SM shared memory
¤ Small memory close to the

processor, low latency
¨  Device memory

¤ GPU frame buffer
¤ Can be accessed by any

thread in any SM

Kernel 1
Per-device

Global
Memory

…

…

Atomic Operations
44

¨  Device memory is not coherent!

¨  Share data between streaming multiprocessors

¨  Read / Modify / Write

¨  Fermi increases atomic performance by 5x to 20x
¤ Still, much slower than non-atomic access

ECC (Error-Correcting Code)
45

¨  All major internal memories are ECC protected
¤ Register file, L1 cache, L2 cache

¨  DRAM protected by ECC (on Tesla only)

¨  ECC is a must have for many computing applications

NVIDIA Kepler
46

¨  New core - SMX (successor of SM)
¤ 192 single precision FMAs per cycle

n 4x compared to Fermi’s 48

¤ GTX 680 has 8 cores

¨  Dynamic parallelism
¨  HyperQ

Getting technical
47

CUDA:
Programming NVIDIA GPUs

2

CUDA
49

¨  CUDA: Scalable parallel programming
¤ C/C++ extensions
¤ Higher level extensions, too

¨  Provide straightforward mapping onto hardware
¤ Good fit to GPU architecture
¤ Maps well to multi-core CPUs too

¨  Scale to 1000s of cores & 100,000s of threads
¤ GPU threads are lightweight — create / switch is free
¤ GPU needs 1000s of threads for full utilization

Parallel Abstractions in CUDA
50

¨  Hierarchy of concurrent threads
¤ Concurrent thread blocks

¨  Lightweight synchronization primitives

¨  Shared memory model for cooperating threads

Hierarchy of concurrent threads
51

¨  Parallel kernels composed of many threads
¤ All threads execute the same kernel = sequential

program

¨  Threads are grouped into thread blocks
¤ Threads in the same block can cooperate
¤ Threads in different blocks cannot cooperate

¨  All thread blocks are organized in a Grid
¤ 1D or 2D or 3D

¨  Threads and blocks have unique IDs

Thread t

Block b

Grids, Thread Blocks and Threads

Grid
Thread Block 0, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Indexing
53

¨  dim3 threadsPerBlock(3, 4);
¤  threadsPerBlock.x = 3
¤  threadsPerBlock.y = 4
¤  threadID = (threadIdx.x, threadIdx.y)

¨  dim3 numBlocks(2, 3);
¤ blockDim.x = 2
¤ blockDim.y=3
¤ blockID = (blockIdx.x, blockIdx.y)

¨  Launch kernel:
myKernel<<<numBlocks, threadsPerBlock>>>(…);

Grid
Thread Block 0, 0
0,
0 0,

1 0,
2 0,

3
1,
0 1,

1 1,
2 2,

3
2,
0 2,

1 2,
2 2,

3

Thread Block 0, 1
0,
0 0,

1 0,
2 0,

3
1,
0 1,

1 1,
2 2,

3
2,
0 2,

1 2,
2 2,

3

Thread Block 0, 2
0,
0 0,

1 0,
2 0,

3
1,
0 1,

1 1,
2 2,

3
2,
0 2,

1 2,
2 2,

3
Thread Block 1, 0
0,
0 0,

1 0,
2 0,

3
1,
0 1,

1 1,
2 2,

3
2,
0 2,

1 2,
2 2,

3

Thread Block 1, 1
0,
0 0,

1 0,
2 0,

3
1,
0 1,

1 1,
2 2,

3
2,
0 2,

1 2,
2 2,

3

Thread Block 1, 2
0,
0 0,

1 0,
2 0,

3
1,
0 1,

1 1,
2 2,

3
2,
0 2,

1 2,
2 2,

3

CUDA Model of Parallelism
54

¨  CUDA virtualizes the physical hardware
¤  Devices have

n  Different numbers of SMs
n  Different compute capabilities (Fermi = 2.0, before: 1.0, 1.1, 1.2)

¤  block is a virtualized streaming multiprocessor (threads, shared memory)
¤  thread is a virtualized scalar processor (registers, PC, state)

¨  Scheduled onto physical hardware without pre-emption
¤  threads/blocks launch & run to completion
¤  blocks have to be independent

• • •
Block Shared

Memory

Block Shared
Memory

Device Memory

Memory Spaces in CUDA
55

Grid

Device Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Thread

Per-thread
Local Memory

SM

Per-SM
Shared
Memory

Kernel 0

Multiple Memory Scopes
56

¨  Per-thread private
memory
¤ Each thread has its own

local memory
¤ Stacks, other private

data, registers

¨  Per-SM shared memory
¤ Small memory close to the

processor, low latency
¨  Device memory

¤ GPU frame buffer
¤ Can be accessed by any

thread in any SM

Kernel 1
Per-device

Global
Memory

…

…

Device Memory
57

¨  CPU and GPU have separate memory spaces
¤ Data is moved across PCI-e bus
¤ Use functions to allocate/set/copy memory on GPU
¤ Very similar to corresponding C functions

¨  Pointers are just addresses
¤ Can’t tell from the pointer value whether the address is

on CPU or GPU
¤ Must exercise care when dereferencing:

n Dereferencing CPU pointer on GPU will likely crash
n Same for vice versa

Additional memories

¨  Textures
¤ Read-only
¤ Data resides in device memory
¤ Different read path, includes specialized caches

¨  Constant memory
¤ Data resides in device memory
¤ Manually managed
¤ Small (e.g., 64KB)
¤ Assumes all threads in a block read the same addresses

n Serializes otherwise

GPU Memory Allocation / Release
59

¨  Host (CPU) manages device (GPU) memory:
¤  cudaMalloc(void **pointer, size_t nbytes)
¤  cudaMemset(void *pointer, int val, size_t count)
¤  cudaFree(void* pointer)

int n = 1024;
int nbytes = n * sizeof(int);
int* data = 0;
cudaMalloc(&data, nbytes);
cudaMemset(data, 0, nbytes);
cudaFree(data);

Data Copies
60

¨  cudaMemcpy(void *dst, void *src,
 size_t nbytes,
 enum cudaMemcpyKind direction);

¤  returns after the copy is complete
¤  blocks CPU thread until all bytes have been copied
¤  doesn’t start copying until previous CUDA calls complete

¨  enum cudaMemcpyKind
¤ cudaMemcpyHostToDevice
¤ cudaMemcpyDeviceToHost
¤ cudaMemcpyDeviceToDevice

¨  Non-blocking copies are also available
¤ DMA transfers, overlap computation and communication

CUDA Variable Type Qualifiers
61

Variable declaration Memory Scope Lifetime

int var; register thread thread

int array_var[10]; local thread thread

__shared__ int shared_var; shared block block

__device__ int global_var; device grid application

__constant__ int constant_var; constant grid application

C for CUDA
62

¨  Philosophy: provide minimal set of extensions necessary

¨  Function qualifiers:
__global__ void my_kernel() { }
__device__ float my_device_func() { }

¨  Execution configuration:
dim3 gridDim(100, 50); // 5000 thread blocks
dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M total)
my_kernel <<< gridDim, blockDim >>> (...); // Launch kernel

¨  Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index

void syncthreads(); // Thread synchronization

Calculating the global thread index
63

¨  “global” thread index:
 blockDim.x * blockIdx.x + threadIdx.x;

Grid
Thread Block 0

0 1 2 3
Thread Block 1

0 1 2 3
Thread Block 2

0 1 2 3

blockDim.X

64

Grid
Thread Block 0

0 1 2 3
Thread Block 1

0 1 2 3
Thread Block 2

0 1 2 3

blockDim.X

Calculating the global thread index
64

¨  “global” thread index:
 blockDim.x * blockIdx.x + threadIdx.x;

 4 * 2 + 1 = 9

Vector add
65

void vector_add(int size, float* a, float* b, float* c) {

 for(int i=0; i<size; i++) {

 c[i] = a[i] + b[i];

 }

}

Vector add kernel: GPU & Host
66

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C) {

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main() {

 // initialization code here ...

 N = 5120;

 // launch N/256 blocks of 256 threads each

 vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);

 // cleanup code here ...

}

GPU code

Host code

(can be in the same file)

Vector add kernel: GPU & Host
67

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C) {

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main() {

 // initialization code here ...

 N = 5000;

 // launch N/256 blocks of 256 threads each

 vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);

 // cleanup code here ...

}

GPU code

Host code

(can be in the same file)

What if N = 5000?

Vector add kernel: GPU & Host
68

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C) {

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 if (i<N) C[i] = A[i] + B[i];

}

int main() {

 // initialization code here ...

 N = 5000;

 // launch N/256 blocks of 256 threads each

 vector_add<<< N/256+1,256 >>>(deviceA, deviceB,
deviceC);

 // cleanup code here ...

}

GPU code

Host code

(can be in the same file)

What if N = 5000?

69

int main(int argc, char** argv) {

 float *hostA, *deviceA, *hostB, *deviceB, *hostC, *deviceC;

 int size = N * sizeof(float);

 // allocate host memory

 hostA = malloc(size);

 hostB = malloc(size);

 hostC = malloc(size);

 // initialize A, B arrays here...

 // allocate device memory

 cudaMalloc(&deviceA, size);

 cudaMalloc(&deviceB, size);

 cudaMalloc(&deviceC, size);

Vector add: Host

70

 // transfer the data from the host to the device
 cudaMemcpy(deviceA, hostA, size, cudaMemcpyHostToDevice);

 cudaMemcpy(deviceB, hostB, size, cudaMemcpyHostToDevice);

 // launch N/256 blocks of 256 threads each
 vector_add<<<N/256, 256>>>(deviceA, deviceB, deviceC);

 // transfer the result back from the GPU to the host

 cudaMemcpy(hostC, deviceC, size, cudaMemcpyDeviceToHost);

}

Vector add: Host

Summary

¨  Write kernel(s)
¤ Sequential code
¤ Written per-thread

¨  Determine block geometry
¤ Threads per block, blocks per grid
¤ Number of grids (>= number of kernels)

¨  Write host code
¤ Memory initialization and copying to device
¤ Kernel(s) launch(es)
¤ Results copying to host

¨  Optimize the kernels

71

Advanced CUDA:
Scheduling, Synchronization, Atomics

3

Thread Scheduling

¨  Order in which thread blocks are scheduled is
undefined!
¤ any possible interleaving of blocks should be valid
¤ presumed to run to completion without preemption
¤ can run in any order
¤ can run concurrently OR sequentially

¨  Order of threads within a block is also undefined!

73

Global synchronization

¨  Q: How do we do global synchronization with these
scheduling semantics?

74

Global synchronization

¨  Q: How do we do global synchronization with these
scheduling semantics?

¨  A1: Not possible!

75

Global synchronization

¨  Q: How do we do global synchronization with these
scheduling semantics?

¨  A1: Not possible!
¨  A2: Finish a grid, and start a new one!

76

Global synchronization

¨  Q: How do we do global synchronization with these
scheduling semantics?

¨  A1: Not possible!
¨  A2: Finish a grid, and start a new one!

step1<<<grid1,blk1>>>(...);

// CUDA ensures that all writes from step1 are complete.

step2<<<grid2,blk2>>>(...);

¨  We don't have to copy the data back and forth!

77

Atomics

¨  Guarantee that only a single thread has access to a
piece of memory during an operation
¤ No loss of data
¤ Ordering is still arbitrary

¨  Different types of atomic instructions
¤ Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor
¤ On device memory and/or shared memory

¨  Much more expensive than load + operation + store

78

Example: Histogram

// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 buckets[c] += 1;
}

79

Example: Histogram

// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 buckets[c] += 1;
}

80

Example: Histogram

// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter atomically

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 atomicAdd(&buckets[c], 1);
}

81

1.  Coalescing
2.  Shared Memory
3.  Occupancy
4.  Shared Memory Bank Conflicts

CUDA: optimizing your application 4

Coalescing
83

Consider the stride of your accesses

__global__ void foo(int* input, float3* input2) {

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 // Stride 1, OK!

 int a = input[i];

 // Stride 2, half the bandwidth is wasted

 int b = input[2*i];

 // Stride 3, 2/3 of the bandwidth wasted

 float c = input2[i].x;

}

84

Example: Array of Structures (AoS)

struct record {
 int key;
 int value;
 int flag;
};

record *d_records;
cudaMalloc((void**)&d_records, ...);

85

Example: Structure of Arrays (SoA)

Struct SoA {
 int* keys;
 int* values;
 int* flags;
};

SoA d_SoA_data;
cudaMalloc((void**)&d_SoA_data.keys, ...);
cudaMalloc((void**)&d_SoA_data.values, ...);
cudaMalloc((void**)&d_SoA_data.flags, ...);

86

Example: SoA vs AoS

__global__ void kernel(record* AoS_data,
 SoA SoA_data) {
 int i = blockDim.x * blockIdx.x + threadIdx.x;

 // AoS wastes bandwidth
 int key1 = AoS_data[i].key;

 // SoA efficient use of bandwidth
 int key2 = SoA_data.keys[i];
}

87

Memory Coalescing

¨  Structure of arrays is often better than array of
structures

¨  Very clear win on regular, stride 1 access patterns
¨  Unpredictable or irregular access patterns are

case-by-case
¨  Can lose a factor of 10x – 30x!

88

CUDA: optimizing your application 4

1.  Coalescing
2.  Shared Memory
3.  Occupancy
4.  Shared Memory Bank Conflicts

Matrix multiplication example
90

¨  C = A * B
¨  Each element C,i,j
 = dot(row(A,i),col(B,j))
¨  Parallelization strategy

¤ Each thread computes element in C
¤ 2D kernel

B

C A

Matrix multiplication implementation
91

__global__ void mat_mul(float *a, float *b,

 float *c, int width)

{

 // calc row & column index of output element

 int row = blockIdx.y*blockDim.y + threadIdx.y;

 int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

 // do dot product between row of a and column of b

 for(int k = 0; k < width; k++) {

 result += a[row*width+k] * b[k*width+col];
}

 c[row*width+col] = result;

}

B

CA

Matrix multiplication performance
92

Loads per dot product term 2 (a and b) = 8 bytes
FLOPS 2 (multiply and add)
AI 2 / 8 = 0.25
Performance GTX 580 1581 GFLOPs
Memory bandwidth GTX 580 192 GB/s
Attainable performance 192 * 0.25 = 48 GFLOPS
Maximum efficiency 3.0 % of theoretical peak

Data reuse
93

¨  Each input element
in A and B is read
WIDTH times

¨  Load elements into
shared memory

¨  Have several
threads use local
version to reduce
the memory
bandwidth

B

C A

WIDTH

Using shared memory
94

¨  Partition kernel loop into phases
¨  In each thread block, load a tile

of both matrices into shared
memory each phase

¨  Each phase, each thread
computes a partial result

TILE_WIDTH

B

A C
1

1

3

2 3

2

Matrix multiply with shared memory
95

__global__ void mat_mul(float *a, float *b,
 float *c, int width) {

 // shorthand
 int tx = threadIdx.x, ty = threadIdx.y;
 int bx = blockIdx.x, by = blockIdx.y;

 // allocate tiles in shared memory
 __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
 __shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

 // calculate the row & column index
 int row = by*blockDim.y + ty;
 int col = bx*blockDim.x + tx;

float result = 0;

Matrix multiply with shared memory
96

 // loop over input tiles in phases
 for(int p = 0; p < width/TILE_WIDTH; p++) {
 // collaboratively load tiles into shared memory
 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 // dot product between row of s_a and col of s_b
 for(int k = 0; k < TILE_WIDTH; k++) {
 result += s_a[ty][k] * s_b[k][tx];
 }

 __syncthreads();
 }

 c[row*width+col] = result;
}

B

A C
1 2 3

1

2

3

Use of Barriers in mat_mul
97

¨  Two barriers per phase:
¤ __syncthreads after all data is loaded into shared memory
¤ __syncthreads after all data is read from shared memory
¤ Second __syncthreads in phase p guards

the load in phase p+1

¨  Use barriers to guard data
¤ Guard against using uninitialized data
¤ Guard against corrupting live data

Matrix multiplication performance
98

Original shared memory

Global loads 2N3 * 4 bytes (2N3 / TILE_WIDTH) * 4 bytes

Total ops 2N3 2N3

AI 0.25 0.25 * TILE_WIDTH

Performance GTX 580 1581 GFLOPs

Memory bandwidth GTX 580 192 GB/s

AI needed for peak 1581 / 192 = 8.23

TILE_WIDTH required to
achieve peak

0.25 * TILE_WIDTH = 8.23,
TILE_WIDTH = 32.9

CUDA: optimizing your application 99

1.  Coalescing
2.  Shared Memory
3.  Occupancy
4.  Shared Memory Bank Conflicts

Thread Scheduling

¨  SM implements zero-overhead warp scheduling
¤ A warp is a group of 32 threads that runs concurrently on an SM
¤ At any time, only one of the warps is executed by an SM
¤ Warps whose next instruction has its inputs ready for consumption

are eligible for execution
¤  Eligible Warps are selected for execution on a prioritized

scheduling policy
¤ All threads in a warp execute the same instruction when selected

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

100

Stalling warps

¨  What happens if all warps are stalled?
¤ No instruction issued → performance lost

¨  Most common reason for stalling?
¤ Waiting on global memory

¨  If your code reads global memory every couple of
instructions
¤ You should try to maximize occupancy

101

Occupancy

¨  What determines occupancy?
¤ Number of threads and blocks
¤ Memory consumption

¨  Limited hardware resources
¤ Register usage per thread => may limit number of

threads
¤ Shared memory per thread block => may limit number

of blocks

102

Resource Limits (1)

¨  Pool of registers and shared memory per SM
¤  Each thread block grabs registers & shared memory
¤  If one or the other is fully utilized no more thread blocks

TB 0

Registers Shared Memory

TB 1

TB 2

TB 0

TB 1

TB 2

TB 0

Registers

TB 1
TB 0

TB 1

Shared Memory

103

Resource Limits (2)

¨  Can only have 8 thread blocks per SM
¤  If they’re too small, can’t fill up the SM
¤ Need 128 threads / block on gt200 (4 cycles/instruction)
¤ Need 192 threads / block on Fermi (6 cycles/instruction)

¨  Higher occupancy has diminishing returns for hiding
latency

104

Hiding Latency with more threads
105

How do you know what you’re using?

¨  Use “nvcc -Xptxas –v” to get register and
shared memory usage

¨  Plug those numbers into CUDA Occupancy
Calculator

106

CUDA: optimizing your application 108

1.  Coalescing
2.  Shared Memory
3.  Occupancy
4.  Shared Memory Bank Conflicts

Shared Memory Banks

¨  Shared memory is banked
¤ Only matters for threads within a warp
¤ Full performance with some restrictions

n Threads can each access different banks
n Or can all access the same value

¨  Consecutive words are in different banks
¨  If two or more threads access the same bank but

different value, we get bank conflicts

109

Bank Addressing Examples: OK

n  No Bank Conflicts n  No Bank Conflicts

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

110

Bank Addressing Examples: BAD

n  2-way Bank Conflicts n  8-way Bank Conflicts

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

111

Trick to Assess Performance Impact

¨  Change all shared memory reads to the same value
¨  All broadcasts = no conflicts
¨  Will show how much performance could be

improved by eliminating bank conflicts

¨  The same doesn’t work for shared memory writes
¤ So, replace shared memory array indices with
 threadIdx.x
¤  (Could also be done for the reads)

112

OpenCL:
Programming GPUs, CPUs, APUs

5

Portability

¨  Inter-family vs inter-vendor
¤ NVIDIA Cuda runs on all NVIDIA GPU families
¤ OpenCL runs on all GPUs, Cell, CPUs

¨  Parallelism portability
¤ Different architecture requires different granularity
¤ Task vs data parallel

¨  Performance portability
¤ Can we express platform-specific optimizations?

114

The Khronos group
115

OpenCL: Open Compute Language

¨  Architecture independent
¨  Explicit support for many-cores
¨  Low-level host API

¤ Uses C library, no language extensions

¨  Separate high-level kernel language
¤ Explicit support for vectorization

¨  Run-time compilation
¨  Architecture-dependent optimizations

¤ Still needed
¤ Possible

116

Cuda vs OpenCL Terminology

CUDA OpenCL
Thread Work item
Thread block Work group
Device memory Global memory
Constant memory Constant memory
Shared memory Local memory
Local memory Private memory

117

Cuda vs OpenCL Qualifiers

CUDA OpenCL
__constant__ __constant
__device__ __global
__shared__ __local

CUDA OpenCL
__global__ __kernel
__device__ (no qualifier needed)

Functions

Variables

118

Cuda vs OpenCL Indexing

CUDA OpenCL
gridDim get_num_groups()
blockDim get_local_size()
blockIdx get_group_id()
threadIdx get_local_id()
Calculate manually get_global_id()
Calculate manually get_global_size()

__syncthreads() → barrier()

119

Vector add: Cuda vs OpenCL kernel

__global__ void
vectorAdd(float* a, float* b, float* c) {
 int index = blockIdx.x * blockDim.x + threadIdx.x;
 c[index] = a[index] + b[index];
}

__kernel void
vectorAdd(__global float* a, __global float* b,
 __global float* c) {
 int index = get_global_id(0);
 c[index] = a[index] + b[index];
}

CUDA

OpenCL

120

OpenCL VectorAdd host code (1)

const size_t workGroupSize = 256;
const size_t nrWorkGroups = 3;

const size_t totalSize = nrWorkGroups * workGroupSize;

cl_platform_id platform;
clGetPlatformIDs(1, &platform, NULL);

// create properties list of key/values, 0-terminated.

cl_context_properties props[] = {

 CL_CONTEXT_PLATFORM, (cl_context_properties)platform,
 0

};

cl_context context = clCreateContextFromType(props,
CL_DEVICE_TYPE_GPU, 0, 0, 0);

121

OpenCL VectorAdd host code (2)

cl_device_id device;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_DEFAULT, 1,

 &device, NULL);

// create command queue on 1st device the context reported
cl_command_queue commandQueue =

 clCreateCommandQueue(context, device, 0, 0);

// create & compile program

cl_program program = clCreateProgramWithSource(context, 1,
 &programSource, 0, 0);

clBuildProgram(program, 0, 0, 0, 0, 0);

// create kernel
cl_kernel kernel = clCreateKernel(program, "vectorAdd",0);

122

OpenCL VectorAdd host code (3)

float* A, B, C = new float[totalSize]; // alloc host vecs
// initialize host memory here...

// allocate device memory

cl_mem deviceA = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 totalSize * sizeof(cl_float), A, 0);

cl_mem deviceB = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 totalSize * sizeof(cl_float), B, 0);

cl_mem deviceC = clCreateBuffer(context,

 CL_MEM_WRITE_ONLY, totalSize * sizeof(cl_float), 0, 0);

123

OpenCL VectorAdd host code (4)

// setup parameter values
clSetKernelArg(kernel, 0, sizeof(cl_mem), &deviceA);

clSetKernelArg(kernel, 1, sizeof(cl_mem), &deviceB);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &deviceC);

clEnqueueNDRangeKernel(commandQueue, kernel, 1, 0,

 &totalSize, &workGroupSize, 0,0,0); // execute kernel

// copy results from device back to host, blocking

clEnqueueReadBuffer(commandQueue, deviceC, CL_TRUE, 0,
 totalSize * sizeof(cl_float), C, 0, 0, 0);

delete[] A, B, C; // cleanup

clReleaseMemObject(deviceA); clReleaseMemObject(deviceB);
clReleaseMemObject(deviceC);

124

Summary and Conclusions 125

Summary and conclusions

¨  Higher performance cannot be reached by
increasing clock frequencies anymore

¨  Solution: introduction of large-scale parallelism
¨  Multiple cores on a chip

¤ Today:
n Up to 48 CPU cores in a node
n Up to 3200 compute elements on a single GPU

¤ Host system can contain multiple GPUs: 10,000+ cores
¤ We can build clusters of these nodes!

¨  Future: 100,000s – millions of cores?

126

Summary and conclusions

¨  Many different types of many-core hardware
¨  Very different properties

¤ Performance
¤ Programmability
¤ Portability

¨  It's all about the memory
¨  Choose the right platform for your application

¤ Arithmetic intensity / Operational intensity
¤ Roofline model

127

Open questions

¨  New application domains – e.g., signal processing,
graph processing.
¤ Perfomrance analysis
¤ Peformance prediction
¤ Modeling

¨  Memory patterns understanding, description,
detection, automatic improvement
¤ Local memory usage

¨  Heterogeneous computing
¤ Using both the host and the device

¨  Application-device fitting

128

Questions?
129

¨  Slides are/will be available
¨  If you are interested in working with us on using

GPUs for new applications, let us know!

 A.L.Varbanescu@uva.nl

