Benedict R. Gaster Lee Howes David Kaeli
Perhaad Mistry Dana Schaa

UNIVERSITY OF AMSTERDAM
X

Heterogeneous Computing

e ’:f!?'??’rﬂrﬁ':" e OpenCL Preoga(n;n];;ngGuide
' : & ti j ﬁ'}-L?"':?.f: 5

1

The

CUDA

e

T

HANDBOOK

Comprehensive Guide tc

Programming Massively
Parallel Processors

Aaftab Munshi « Benedict R. Gaster
Timothy G. Mattson « James Fung * Dan Ginsburg

Faves€ bn Posbent« Tul el hai Wasied Lasversty

h
ROB FARBER PROGRAMMING

‘ U D A A DEVELOPER'S GUIDE TO PARALLEL COMPUTING WITH GPU'S

APPLICATION DESIGN ‘
AND DEVELOPMENT

0

| — e ——

GPU PROGRAMMING & -

HPC courses Ana Lucia Varbanescu

MS 2.

S naenn

UvA, June 2014

Graphics in 1980

Graphics in 2000

eric ate Ares's rocket
Mr Elusive ate Ares's rocket
Ares was melted by Willits's plasmagun

You fragged Ares
place with 28

Realism of modern GPUs

I =
ITV accused of using ArmA 2 game
http://www.youtube.com /watch?

fOOtage in IRA doc v=bJDeipvpiGQ&feature=pla
Updated: WHOOPS yer _embedded#t=49s

By Kate Solomon
September 27th | Tell us what you think [4 comments]

EiLike <91 &) Send 3 Tweet 29 +1 |02

ITV seems to have broadcast a
documentary about Colonel
Gaddafi's support for the IRA
passing gameplay action taken
from ArmA 2 off as genuine
documentary footage.

Update: ITV has now sent us a
comment on the situation. A
spokesman said, "The events
featured in Exposure: Gaddafi and
the IRA were genuine but it would IRA footage? Er, no
appear that during the editing
process the correct clip of the 1988
incident was not selected and other footage was mistakenly included in the

film by producers. This was an unfortunate case of human error for which we Courtesy
apologise." techradar.com

TODOQO List
B

1. Multi and many-core hardware

2. GPGPUs

5. CUDA

4. Advanced CUDA
5. (some) OpenCL

- Why many-cores?

Multi-cores = Intel processors with multiple,
homogeneous cores

Many-cores = GPUs & alikes

y
Moore s Law

0 Gordon Moore (co-founder of Intel) predicted in 1965
that the transistor density of semiconductor chips would

double roughly every 18 months.

Transistor Counts (Intel)
R

transistors

| | | i ! ! 10,000,000,000

l)ual-Cocel Intel® ltanbm' 2 Processor
| Intel* ltanmn' 2 Pfooesor I 1.000,000,000
MOORE'S LAW Intel® tanium® Processor
htel' Pentium* 4 Processor ./ 100,000,000
Intel’ Pentium® Bl Processor
lmﬂ‘ Pentlun’] Ptomsor 10,000,000
Intel* Pemlun‘ Pfoassor
lmal486‘| Processor
I 1,000,000
Intel386™ |Pmoessa
100,000
T 8080 - 10,000
8008
4004 g

1,000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Revolution in Processors
=

o , 0 Chip density is
- - / continuing to
Intel CPU Trends A .
(sources: Intel, Wikipedia, K. Olukotun}) - INcredse CIbOUT 2X

I%M ’ every 2 years
10,000

0 BUT

1,000 O Clock speed is not
. 0 ILP is not
O Power is not
10
1 | Transistors (000) -
e . @ Clock Speed (MHz)
PPAP APower (W)
@ Perf/Clock (ILP)

o [[|
1970 1975 1980 1985 1990 1995 2000 2005 2010

New ways to use transistors

0 Parallelism on-chip: multi-core processors

“é . . »”
01 Multicore revolution
Every machine will soon be a parallel machine

What about performance?

0 Can applications use this parallelism?

YES, many have to be rewritten from scratch!

0 Will all programmers have to be parallel
programmers?

YES, implicit or explicit!

Top500 [1/4]

Rank

0 State of the art in HPC (top500.0rg)

o Trial for all new HPC architectures

Rmax Rpeak Power
Site System Cores (TFlop/s) (TFlop/s) (kW)
National University of Defense Technology Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel 3120000 33862.7 54902.4 17808
China Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel
I .
195 cores/node! Xeon Phi 31S1P Accelerated!
NUDT
DOE/SC/Oak Ridge National Laboratory Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray 5608640 17590.0 271125 8209
United States Gemini interconnect, NVIDIA K20x I
Accelerated!
Cray Inc.
DOE/NNSA/LLNL Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, 1572864 17173.2 20132.7 7890
United States Custom
IBM
RIKEN Advanced Institute for K computer, SPARC64 Vllifx 2.0GHz, Tofu 705024 10510.0 11280.4 12660
Computational Science (AICS) interconnect
Japan Fujitsu
DOE/SC/Argonne National Laboratory Mira - BlueGene/Q, Power BQC 16C 1.60GHz, 786432 8586.6 10066.3 3945
United States Custom

IBM

Top500: cores per socket

Cores per Socket System Share

Ms
Ws
M
m s
m 2
m2
L B

Hs
Hs
s
M 6
m 2
N2

Top500: Accelerators
, [

Accelerator/Co-Processor System Share

M None

I NVIDIA 2090

I NVIDIA 2050

B NVIDIA 2070

Il NVIDIA K20

M Intel Xeon Phi 5110P
B NVIDIA K20x

13V

Accelerator/Co-Processor Performance Share

M None

Il NVIDIA 2090

I NVIDIA 2050

Il NVIDIA 2070

Il NVIDIA K20

M Intel Xeon Phi 5110P
B NVIDIA K20x

13V

[J ' [
China's Tianhe-1A
ey
#10 in top500 list — June 2013 (fﬂ in Top500 in November 2010)

4.701 pflops peak
2.566 pflops max

N
(01 g

I L

14,336 Xeon X5670 processors
7168 Nvidia Tesla M2050 GPUs x 448 cores = 3,211,264 cores

China's Tianhe-2
15|
#1 in Top500 — June 2013

54.902 pflops peak

33.802 pflops max s

16.000 nodes = 16.000 x (2 x Xeon IvyBridge + 3 x Xeon Phi)
= 3.120.000 cores (=> 195 cores/node)

Top500: prediction

16
PERFORMANCE DEVELOPMENT PROECTED

1 Eflop/s
100 Phlop/s
10 Phlap/s
1 Pllop/s
100 THlop/s
o0 1
R L
10 Mlop/s ' ! '
oo " 00
cm— o ! sV 00
1 Miopls 117 Wop/s [
st !
100 Gllop/s] .
591 G o
10 Ghop/s 0 o !
E
o !
0 !
0.4

1993 1994 1985 1996 1997 1398 1989 2000 2001 2002 2003 2004 2005 2006 2007 2008 2008 2000 21 202 2003 00 2015 6 2007 008

GPUs vs. Top500

100 pflops
10 pflops
1 pflops
100 tflops
10 tflops

1 tflops
100 gflops
10 gflops
1 gflops

100 mflops

—m— fastest supercomputer in the world
—m— nr. 500 supercomputer in the world
—m— 1 single Graphics Processing Unit

2017 A

2019

GPUs vs. CPUs

Theoretical
GFLOP/s
3250

GeForceGTX 680

w=t==NVIDIA GPU Single Precision
2750 wgee NVIDIA GPU Double Pred son

2500 g Irtel CPU Single Preason
st Inted CPU Dauble Preci sion
2250

1750
1500
1250 -
1000
750

GeForceGTX 480

GeForceGTX 280

GeForce8800GTX Tesla C2050

SandyBridge
GeForce 7800 GTX
250 Geforce 6800 Ultra

(_.;E'F orce FX :' 00

TeslaC1060
Woodcrest

Westmer
1 Jun-04 Mar-0712rPertown o 00 Auvg-12

Floating-Point Operations per Second - NVIDIA CUDA C Programming Guide
Version 4.2 -4/5/2012 - copyright NVIDIA Corporation 2012

GPUs vs CPUs

Theoretical GB/s
200 GeForceGT X680
180 GeForceGTX 480
-—g=CPU
160
~®=GPU (o rorceGTX 280
140
120
100
GeForcedsGTX
80
60 CeForce7300GTX Msﬁ&
-‘"b-r bree6S00GT
GeForceFX 5900

0

m T T T T T T T T 1

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Memory Bandwidth for the CPU and GPU-NVIDIACUDAC
Programming Guide - Version 4.2 -4/5/2012 - copyright NVIDIA
Corporation 2012

Why do we need many-cores?

0 Performance
O Large scale parallelism
0 Power Efficiency

O Use transistors more efficiently

01 Price (GPUs)
0 Game market is huge, bigger than Hollywood
O Mass production, economy of scale
O “spotty teenagers” pay for our HPC needs!
0 Prestige
0 Reach ExaFLOP by 2019

T

GPUs = the hardware
GPGPU = general purpose GPU

GPGPU History

“Fermi”
3B xtors

GeForce 8800
681M xtors
GeForce FX

125M xtors
GeForce 3

GeForce® 256 60M xtors
RIVA 128 23M xtors

3M xtors

1995 2000

2010

0 Current generation: NVIDIA Kepler
0 /.1B transistors

O More cores, more parallelism, more performance

GPGPU History

0 Use Graphics primitives for HPC
o lkonas [England 1978]
O Pixel Machine [Potmesil & Hoffert 1989]
O Pixel-Planes 5 [Rhoades, et al. 1992]

0 Programmable shaders, around 1998
O DirectX / OpenGL

O Map application onto graphics domain!

0 GPGPU

O Brook (2004), Cuda (2007), OpenCL (Dec 2008), ...

Another GPGPU history

Growth of GPU Computing

100M [E] [ﬂ[i”i”ﬂ[! 430M

CUDA -Capable GPUs CUDA-Capable GPUs

150K ﬁ

CUDA Downloads

El
El
El
El
El
El
El
o)
El
El

e SLEHEH B s

640

University Courses

60 g | o o o o &

University Courses

s
i
¢
}
A

4,000 % | | | "“"‘“‘E 37,000
Academic’Papers %%%%é%é%s Acad,emic Papers

2008 2013

GPUs @ AMD

AMD Radeon Graphics Roadmap

@
@)
=
©
£
O
) =
Q
a

7200, $449

6700, $399

6150, $299

5000, $229

4200, $189

2750, $119

2050, $99

HD 7970 GHz Edition

HD 7970

HD 7950

GTX 680

HD 7870 GHz Edition

GTX 670

GTX 660 Ti

HD 7850

GTX 660

HD 7770 GHz Edition

GTX 650 Ti

HD 7750

GTX 650

GT 640

6300, $499
5650, $399

5000, $299

4350, $229

2900, $149

2000, $109

1200, $89

3DMark Fire Strike
Performance, Priceé

3DMark Fire Strike
Performance, Price

MBARGO UNTIL FEB4, 2013 @ 1201AM ES

GPU @ ARM

ARM Mali

“Graphics Performance Leadership”

x14 #7
Mali-Te04

-mrmm performance and flexibility
- GPGPU computing with Mliwbm

x14 State of the art bandwidth reduction
Mali-400 MP DirectX11 and next generation Khronos graphics standards up to 2GPids

- World"s first multicore embedded GPU
- High-performance graphics to beyond 1080p
Mmmmmm

@ Mali-300
- Ideal configuration for mid-range use-cases
- Efficient energy and bandwidth usage
8 mali-200
- level All Mali GPUs support the Khronos APls
.mmuwwm OpenVG 1.1 and OpenGL ES 2.0 plus roadmap

... 2010 2011 2012 2013

Integration into host system
s

= Typically PCl Express 2.0 x16

= Theoretical speed 8 GB/s
= protocol overhead — 6 GB/s

= In reality: 4 — 6 GB/s
= V3.0 recently available
= Double bandwidth

= Less protocol overhead

x16

Lessons from the graphics pipeline
s

0 Throughput is the main focus
must paint every pixel within frame time

scalability

0 Create, run, and retire lots of threads very rapidly

measured 14.8 billion thread /s on increment() kernel

0 Use multithreading to hide latency
1 stalled thread is OK if 100 are ready to run

Key GPU architectural ideas
oo

0 Data parallel, like a vector machine

There, 1 thread issues parallel vector instructions

0 SIMT (Single Instruction Multiple Thread) execution
Many threads work on a vector, each on a different element
They all execute the same instruction

HW automatically handles divergence

0 Hardware multithreading
HW resource allocation & thread scheduling
HW relies on threads to hide latency

Context switching is (practically) free

CPU vs. GPU

0 Different goals produce different designs
GPU assumes work load is highly parallel
CPU must be good at everything, parallel or not

0 CPU: minimize latency experienced by 1 thread
big on-chip caches
sophisticated control logic

0 GPU: maximize throughput of all threads

threads in flight limited by resources => lots of
resources (registers, etc.)

multithreading can hide latency => no big caches

share control logic across many threads

Chip area CPU vs GPU

-
o

O

It's all about the memory

CPU

many-core

@ L

CPU vs GPU

1 Movie

1 The Mythbusters
o0 Jamie Hyneman & Adam Savage

o Discovery Channel

0 Appearance at NVIDIA’'s NVISION 2008

e —————— e

MYTHBUSTERS

RADEON

GRAPHICS

Latest generation ATI
=

0 Southern Islands
0 1 chip: HD 7970
2048 cores
264 GB/sec memory bandwidth

3.8 Tflops single, 247 Gflops double precision
Maximum power: 250 Watts
399 euros!

1 2 chips: HD 7990
4096 cores, 7.6 Tflops

1 Note: the entire 36-node DAS-4 TUD cluster has 2.2
Tflops

ATl programming models

0 Low-level: CAL (assembly)
0 High-level: Brook+
Originally developed at Stanford University

Streaming language

Performance is not great

0 Now
OpenCL

o Near future

HSA — Heterogeneous System Architecture
HSAIL — HSA Intermediate Language

Targeted at Fusion devices, single source code

0 HPC: Tesla C2050

0 More memory, ECC
o 1.0 Tlop SP

o 515 GFlop SP

0 16 streaming
multiprocessors (SM)
0o GTX 580: 16
0 GTX 480: 15
o C2050: 14

0 SMs are independent

0 768 KB L2 cache T | = —

Fermi Streaming Multiprocessor (SM)

0 32 cores per SM P—

(512 cores total) — _—

8- 8-

11 64KB configurable o ———

Core Core Core

L1 cache / shared memory ot

0 32,768 32-bit registers s

Host Interface

i LD/ST

LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

Memory Controller

Core Core Core
Core Core Core
LD/ST
~Interconnect Network ==
64 KB Shared Memory /L1 Cache
Uniform Cache

Tex Tex

Texture Cache
PolyMorph Engine

|Vertex Fetch || Tessellator || qnowPort |

[attribute Setup| [stream output |

CUDA Core Architecture

0 Decoupled floating point
and integer data paths

01 Double precision throughput |

is 50% of single precision

0 Integer operations
optimized for extended
precision

64 bit and wider data
element size

0 Predication field for all
instructions

0 Fused-multiply-add

Memory Hierarchy
224
0 Configurable L1 cache per SM
0 16KB L1 cache / 48KB Shared
00 48KB L1 cache / 16KB Shared

registers

L1 cache / shared mem

0 Shared 768KB L2 cache

Device memory

Host memory

PCl-e
bus

Multiple Memory Scopes
I

0 Per-thread private Thread

memory Per-thread
Local Memory

o Stacks, other private SM
dataq, registers

o Each thread has its own
local memory

Per-SM

01 Per-SM shared memory Ai*:nr:rdy

0 Small memory close to the

processor, low latency
Kernel O

D D e v i C e m e m O r y f’)}}n ,E?:f?ﬁ?? :.’!2:«3,; .,u,,,,_,:
0 GPU frame buffer Per-device

Global

Memory

0 Can be accessed by any
thread in any SM

Atomic Operations
N

1 Device memory is not coherent!
0 Share data between streaming multiprocessors

0 Read / Modify / Write

0 Fermi increases atomic performance by 5x to 20x

Still, much slower than non-atomic access

ECC (Error-Correcting Code)
s

01 All major internal memories are ECC protected

Register file, L1 cache, L2 cache

0 DRAM protected by ECC (on Tesla only)

0 ECC is a must have for many computing applications

KEPLER
32 SIMULTANEOUS MP1 TASKS

DYNAMIC PARALLELISM
NVIDIA HYPER-Q

FERMI
1 MPI" TASK AT A TIME

ion FMAs per cycle

IS

m 4x compared to Fermi’s 48

0 GTX 680 has 8 cores

0 Dynamic parallelism

0 New core - SMX (successor of SM)
0 192 single prec

NVIDIA Kepler

0 HyperQ

SEsEEERPEEREEREEe
SisEseseeEcEEEw
sSEsEseEseeasaaan

SESESEPe SRS EEEEE

Ty
SESEsEPEeEEEEREN
SEsEsEPa SRS REE
SESEPEPE OO RES
SESEEEREREEEREER
SRS EEEEEEEEEE
Sl sanen
SEGEREPEEEEEGRER

SEsEsEsEEEEEGEEn
SEsEsEEeeEEEEEEn
SESEPEREEEEEEEEE
SR EeEOPEEEEEESE

(ALl L L]
SEsEseEeEee
sSsscsssses

(JJJl 111l 211])

SesessEEsEBEREEN
eSS ESEREEEREEEN
SESEssEs e EEn
SESGssEseEEEEEEn
SasasaEscasasnan
Sl I Il 211111])
SesessEEEEEEEREN
T
SENEEEEREEREREER
LU L L L L L L)l

*Message Pass Interface [MPI)

Getting technical

Fermi GF104 | Kepler GCN Units
Threads 43 43 64 40
Work-items 1536 1536 2048 2560
SP FLOP/cycle 64 96 384 128
Register File 123 123 256 256 KB
Shared Memory 64 KB
L1D = b = 16 KB
Shared Memory BW . 128 Blcycle
L1D BW = - i 64 Blcycle
Register File/Work-item 85.33 85.33 128 102.4 B
Shared Memory/Work-item 50 B
L1/Work-item L2 b 2 25 B
Shared Memory BW/FLOP 1 0.67 0.33* 1 B/FLOP
L1D BW/FLOP ' ' 0.5 B/FLOP

Table 1. GPU Core Computational and Memory Resources

- CUDA:
Programming NVIDIA GPUs

CUDA

00 CUDA: Scalable parallel programming
C/C++ extensions

Higher level extensions, too

0 Provide straightforward mapping onto hardware
Good fit to GPU architecture

Maps well to multi-core CPUs too

0 Scale to 1000s of cores & 100,000s of threads
GPU threads are lightweight — create / switch is free
GPU needs 1000s of threads for full utilization

Parallel Abstractions in CUDA
0

0 Hierarchy of concurrent threads

Concurrent thread blocks
0 Lightweight synchronization primitives

0 Shared memory model for cooperating threads

Hierarchy of concurrent threads

0 Parallel kernels composed of many threads

All threads execute the same kernel = sequential

program Thread t

?

Threads in the same block can cooperate Block b
Threads in different blocks cannot cooperate gggg%

0 Threads are grouped into thread blocks

0 All thread blocks are organized in a Grid
1D or 2D or 3D

0 Threads and blocks have unique IDs

Grids, Thread Blocks and Threads

Thread Block 0, 0 Thread Block 0, 1 Thread Block 0, 2

Thread Block 1, 0 Thread Block 1, 1 Thread Block 1, 2

Grid

I n d eX i n g EE“EE EE“EE EE“EE
D dim3 Threq dS PerB IOCk(3, 4); Thread Block 1, 0 Thread Block 1, 1 Thread Block 1, 2
O threadsPerBlock.x = 3 !!!! !!!i !!!!

o threadsPerBlock.y = 4

o threadIlD = (threadldx.x, threadldx.y)
0 dim3 numBlocks(2, 3);

o blockDim.x = 2

0 blockDim.y=3

0 blocklD = (blockldx.x, blockldx.y)
0 Launch kernel:

myKernel<<<numBlocks, threadsPerBlock>>>(...);

CUDA Model of Parallelism

2 OeK Shared Blogk Shared
g%%g% Memory %%gg% Memory

Device Memory

0 CUDA virtualizes the physical hardware
o Devices have

m Different numbers of SMs
m Different compute capabilities (Fermi = 2.0, before: 1.0, 1.1, 1.2)

O block is a virtualized streaming multiprocessor (threads, shared memory)
O thread is a virtualized scalar processor (registers, PC, state)

0 Scheduled onto physical hardware without pre-emption
0 threads/blocks launch & run to completion
O blocks have to be independent

Memory Spaces in CUDA

55

Block (O, 0) Block (1, 0)

Multiple Memory Scopes
T

0 Per-thread private Thread

memory Per-thread
Local Memory

o Stacks, other private SM
dataq, registers

o Each thread has its own
local memory

Per-SM

01 Per-SM shared memory Ai*:nr:rdy

0 Small memory close to the

processor, low latency
Kernel O

D D e v i C e m e m O r y f’)}}n ,E?:f?ﬁ?? :.’!2:«3,; .,u,,,,_,:
0 GPU frame buffer Per-device

Global

Memory

0 Can be accessed by any
thread in any SM

Device Memory

0 CPU and GPU have separate memory spaces
Data is moved across PCl-e bus
Use functions to allocate /set/copy memory on GPU

Very similar to corresponding C functions

01 Pointers are just addresses

Can’t tell from the pointer value whether the address is
on CPU or GPU
Must exercise care when dereferencing:

m Dereferencing CPU pointer on GPU will likely crash

m Same for vice versa

Additional memories
-

0 Textures
Read-only
Data resides in device memory

Different read path, includes specialized caches

0 Constant memory
Data resides in device memory

Manually managed

Small (e.g., 64KB)
Assumes all threads in a block read the same addresses

m Serializes otherwise

GPU Memory Allocation / Release
e

0 Host (CPU) manages device (GPU) memory:
cudaMalloc (void **pointer, size t nbytes)
cudaMemset (void *pointer, int val, size t count)

cudaFree (void* pointer)

int n = 1024;

int nbytes = n * sizeof(int);
int* data = 0;

cudaMalloc (&data, nbytes) ;
cudaMemset (data, 0, nbytes);
cudaFree (data) ;

Data Copies
o

0 cudaMemcpy (void *dst, void *src,
size t nbytes,
enum cudaMemcpyKind direction) ;
returns after the copy is complete
blocks CPU thread until all bytes have been copied
doesn’t start copying until previous CUDA calls complete

0 enum cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

1 Non-blocking copies are also available
DMA transfers, overlap computation and communication

CUDA Variable Type Qualifiers

int array var[10]; local thread thread

__device__ int global_var; device grid application

C for CUDA
S

0 Philosophy: provide minimal set of extensions necessary

0 Function qualifiers:
__global void my kernel() { }
device float my device func() { }

0 Execution configuration:
dim3 gridDim (100, 50); // 5000 thread blocks

dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M total)
my kernel <<< gridDim, blockDim >>> (...); // Launch kernel

0 Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index

void syncthreads(); // Thread synchronization

Calculating the global thread index

Grid

Thread Block 0 Thread Block 1 Thread Block 2

0 “global” thread index:
blockDim.x * blockIdx.x + threadldx.x;

Calculating the global thread index

Grid

Thread Block 0 Thread Block 1 m

0 “global” thread index:
blockDim.x * blockIdx.x + threadldx.x;

Vector add

void vector add(int size, float* a, float* b, float* c) {
for(int 1=0; i<size; i++) {
c[i] = a[i] + b[i];

Vector add kernel: GPU & Host

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[1i];

} GPU code

int main() { Host code
// initialization code here

N = 5120;

// launch N/256 blocks of 256 threads each

vector add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);

// cleanup code here

(can be in the same file)

Vector add kernel: GPU & Host

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[1i];

} GPU code

What if N = 5000¢

int main() { Host code
// initialization code here

N = 5000;
// launch N/256 blocks of 256 threads each
vector add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);

// cleanup code here

(canbe in the samsg file)

Vector add kernel: GPU & Host

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
if (i<N) C[i] = A[i] + B[i];

} GPU code

What if N = 5000¢

int main() { Host code
// initialization code here

N = 5000;
// launch N/256 blocks of 256 threads each

vector add<<< N/256+1,256 >>>(deviceA, deviceB,
deviceC) ;

// cleanup code here

(canbe in the samsg file)

Vector add: Host
=

int main(int argc, char** argv) {
float *hostA, *deviceA, *hostB, *deviceB, *hostC, *device(C;

int size = N * sizeof(float);

// allocate host memory
hostA = malloc(size) ;
hostB = malloc(size) ;

hostC = malloc(size) ;
// initialize A, B arrays here...

// allocate device memory
cudaMalloc (&deviceA, size);
cudaMalloc (&deviceB, size) ;

cudaMalloc (&deviceC, size);

Vector add: Host
I

// transfer the data from the host to the device
cudaMemcpy (deviceA, hostA, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (deviceB, hostB, size, cudaMemcpyHostToDevice) ;

// launch N/256 blocks of 256 threads each
vecto:_add<<<N/256, 256>>> (deviceA, deviceB, deviceC);

// transfer the result back from the GPU to the host

cudaMemcpy (hostC, deviceC, size, cudaMemcpyDeviceToHost) ;

}

Summary
0 Write kernel(s)

Sequential code

Written per-thread

1 Determine block geometry

Threads per block, blocks per grid

Number of grids (>= number of kernels)

o Write host code

Memory initialization and copying to device
Kernel(s) launch(es)

Results copying to host

0 Optimize the kernels

Advanced CUDA:

Scheduling, Synchronization, Atomics

Thread Scheduling
0 Order in which thread blocks are scheduled is
undefined!
any possible interleaving of blocks should be valid
presumed to run to completion without preemption
can run in any order

can run concurrently OR sequentially

1 Order of threads within a block is also undefined!

Global synchronization
2

0 Q: How do we do global synchronization with these
scheduling semantics?

Global synchronization
N

0 Q: How do we do global synchronization with these
scheduling semantics?

1 Al: Not possible!

Global synchronization
BT

0 Q: How do we do global synchronization with these
scheduling semantics?

1 Al: Not possible!

01 A2: Finish a grid, and start a new one!

Global synchronization

0 Q: How do we do global synchronization with these
scheduling semantics?

1 Al: Not possible!

01 A2: Finish a grid, and start a new one!

stepl<<<gridl , blkl1>>>(...);
// CUDA ensures that all writes from stepl are complete.
step2<<<grid2,blk2>>>(...);

o We don't have to copy the data back and forth!

Atomics

0 Guarantee that only a single thread has access to a
piece of memory during an operation
No loss of data
Ordering is still arbitrary
0 Different types of atomic instructions
Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor
On device memory and/or shared memory

01 Much more expensive than load + operation + store

Example: Histogram

// Determine frequency of colors in a picture.

// Colors have already been converted into integers
// between 0 and 255.

// Each thread looks at one pixel,

// and increments a counter

__global void histogram(int* colors, int* buckets)
{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;
int ¢ = colors|[1i];
buckets|[c] += 1;

Example: Histogram
o

//

// s have already been converted into integers
// 0 and 255.
// Each looks at one pixel,

etermine frequency of colors in a picture.

// and incr ounter

__global void hlS ‘%&r(qu* colors, int* buckets)

{
int 1 = threadIdx.x + Qeox * blockIdx.x;

int ¢ = colors|[i];
buckets[c] += 1;

"b
} ts’0':)

Example: Histogram
o

// Determine frequency of colors in a picture.

// Colors have already been converted into integers
// between 0 and 255.

// Each thread looks at one pixel,

// and increments a counter atomically

__global void histogram(int* colors, int* buckets)

{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;
int ¢ = colors|[1i];
atomicAdd (&buckets[c], 1),

- CUDA: optimizing your application

1. Coalescing

2. Shared Memory

3. Occupancy

4. Shared Memory Bank Conflicts

Coalescing

_ 83
traditional multi-core many-core GPU
optimal memory access pattern optimal memory access pattern

=0 —>» address 0 address 0

57 address 1 address 1

address 2 address 2

address 3 address 3

120 3l address 4 address 4

57 address 5 address 5

=0 3p!address 6 address 6

7 address 7 address 7

Consider the stride of your accesses

84
__global void foo(int* input, float3* input2) ({
int i = blockDim.x * blockIdx.x + threadIdx.x;

// Stride 1, OK!

int a = input[i];

// Stride 2, half the bandwidth is wasted
int b = input[2*i];

// Stride 3, 2/3 of the bandwidth wasted
float ¢ = input2[i] .x;

Example: Array of Structures (AoS)
s

struct record {
int key;
int value;
int flag;
}s

record *d records;
cudaMalloc((void**) &d records, ...);

Example: Structure of Arrays (SoA)
T

Struct SoA {
int* keys;
int* values;
int* flags;

};

SoA d SoA data;
cudaMalloc((void**) &d SoA data.keys,
cudaMalloc ((void**) &d SoA data.values,
cudaMalloc((void**) &d SoA data.flags,

Example: SoA vs AoS
__global void kernel (record* AoS data,

SoA SoA data) {
int i = blockDim.x * blockIdx.x + threadIdx.x;

// AoS wastes bandwidth
int keyl = AoS datal[i] .key;

// SoA efficient use of bandwidth
int key2 = SoA data.keys[i];

Memory Coalescing

0 Structure of arrays is often better than array of
structures

0 Very clear win on regular, stride 1 access patterns

0 Unpredictable or irregular access patterns are
case-by-case

1 Can lose a factor of 10x — 30x!

- CUDA: optimizing your application

1. Coalescing

2. Shared Memory

3. Occupancy

4. Shared Memory Bank Conflicts

Matrix multiplication example
S, [

O C=A*B
0 Each element C,i,j
= dot(row(A,i),col(B,j))

0 Parallelization strategy

0 Each thread computes element in C

o 2D kernel I

Matrix multiplication implementation
I

__global void mat mul (float *a, float *b,
float *c, int width)

// calc row & column index of output element
int row = blockIdx.y*blockDim.y + threadIdx.y;
int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and column of b
for(int k = 0; k < width; k++) {
result += a[row*width+k] * b[k*width+col];

}

c[row*width+col] = result;

Matrix multiplication performance
T

Loads per dot product term 2 (a and b) = 8 bytes

FLOPS 2 (multiply and add)

Al 2 /8=0.25
Performance GTX 580 1581 GFLOPs

Memory bandwidth GTX 580 192 GB/s

Attainable performance 192 * 0.25 = 48 GFLOPS

Maximum efficiency 3.0 % of theoretical peak

Data reuse
T

0 Each input element

in A and B is read
WIDTH times WIDTH

0 Load elements into .
shared memory A

0 Have several

threads use local

version to reduce
the memory
bandwidth

Using shared memory
T

01 Partition kernel loop into phases

. TILE WIDTH
0 In each thread block, load a tile -

of both matrices into shared 1
memory each phase

01 Each phase, each thread
computes a partial result

Matrix multiply with shared memory

_ 95 |
__global void mat mul (float *a, float *b,

float *c, int width) {
// shorthand
int tx = threadIdx.x, ty = threadldx.y;
int bx = blockIdx.x, by blockIdx.y;

// allocate tiles in shared memory
shared float s a[TILE WIDTH] [TILE WIDTH];

shared float s b[TILE WIDTH] [TILE WIDTH];

// calculate the row & column index
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;

float result = 0;

Matrix multiply with shared memory
o

// loop over input tiles in phases

for(int p = 0; p < width/TILE WIDTH; p++) {
// collaboratively load tiles into shared memory
s a[ty] [tx] = a[row*width + (p*TILE WIDTH + tx)];
s b[ty] [tx] = b[(p*TILE WIDTH + ty)*width + col];
__syncthreads() ;

// dot product between row of s a and col of s b
for(int k = 0; k < TILE WIDTH; k++) ({
result += s_a[ty] [k] * s b[k][tx];

}

__syncthreads() ;

}

c[row*width+col] = result;

Use of Barriers in mat_mul
0 Two barriers per phase:
__syncthreads after all data is loaded into shared memory
__syncthreads after all data is read from shared memory

Second __ syncthreads in phase p guards
the load in phase p+1

0 Use barriers to guard data
Guard against using uninitialized data

Guard against corrupting live data

Matrix multiplication performance
BT

______ |original _lsharedmemory _____

Global loads 2N3 * 4 bytes (2N3 / TILE_WIDTH) * 4 bytes

Total ops 2N3

Al 0.25

Performance GTX 580
Memory bandwidth GTX 580
Al needed for peak

TILE_WIDTH required to
achieve peak

2N3
0.25 * TILE_WIDTH

1581 GFLOPs
192 GB/s
1581 /192 = 8.23

0.25 * TILE_WIDTH = 8.23,
TILE_WIDTH = 32.9

- CUDA: optimizing your application

1. Coalescing
2. Shared Memory

3. Occupancy
4. Shared Memory Bank Conflicts

Thread Scheduling

0 SM implements zero-overhead warp scheduling
A warp is a group of 32 threads that runs concurrently on an SM
At any time, only one of the warps is executed by an SM

Warps whose next instruction has its inputs ready for consumption
are eligible for execution

Eligible Warps are selected for execution on a prioritized
scheduling policy

All threads in a warp execute the same instruction when selected

| TB1, W1 stall I
—TB2, W1 stal—] TB3, W2 stal |
™ TB2 | TB3 | TB3 | TB2 | TB1 | TB1 | TB1 | TB3
. I A L W W we R W W2 WS We
Instruction: | 1 ' 2 3 4i5 6|1 2|1 2|1:2|3 4|7 8|1 2]|1:.2]3 4

—Time-» TB = Thread Block, W = Warp

Stalling warps
o

0 What happens if all warps are stalled?

No instruction issued — performance lost

0 Most common reason for stalling?

Waiting on global memory

0 If your code reads global memory every couple of
instructions

You should try to maximize occupancy

Occupancy
102
0 What determines occupancy?
Number of threads and blocks

Memory consumption

0 Limited hardware resources

Register usage per thread => may limit number of
threads

Shared memory per thread block => may limit number
of blocks

Resource Limits (1)

_103
Registers Shared Memory Registers Shared Memory
TB 2
TB 1
TB 1
—_ TB 1
TB O
TB O TB 1
TB O
TB O

0 Pool of registers and shared memory per SM
Each thread block grabs registers & shared memory

If one or the other is fully utilized ™» no more thread blocks

Resource Limits (2)
o

0 Can only have 8 thread blocks per SM
If they’re too smaill, can’t fill up the SM

Need 128 threads / block on gt200 (4 cycles/instruction)
Need 192 threads / block on Fermi (6 cycles/instruction)

01 Higher occupancy has diminishing returns for hiding
latency

Hiding Latency with more threads
_ios

Throughput, 32-bit words

100

80 T S
.

.S

./

/

0 128 256 384 512 640 768 896 1024

GB/s

Threads Per Multiprocessor

How do you know what you're using?
o

0 Use “nvee -Xptxas —v” to get register and
shared memory usage

0 Plug those numbers into CUDA Occupancy
Calculator

@) @9~ s CUDA_Occupancy._calculatorxism - Microsoft Excel - = X
Home | Insert Page layout Formulas Data Review View @ - o x
; cut v o - [A) [=] |Swapted 7 rNorma Bad Good o= & :*""S"m AT A
Copy @] Fill ~
paste E T -|I['$ = % o Conditional Format Neutral m Check Cell ﬂ Insert Delete Format Sort & Find &
- J Format Painter [—nl [—l ;}u 22 LG e Formatting ~ as Table - - - (2 Clear ~ Filter~ Select~
Clipboard Fl Font Alignment] Number iEl Cells Editing
Ie Security Warning Macros have been disabled. | 2
MyRegCount - u 25
A LB | ¢ b [E [F [6 [H [1 [4 [k [t [m [N [o P [@ [R]

34 Allocation Per Thread Block

35 Warps 4
36 |Registers 3584

37 Shared Memory 1024
- 38 These data are used in computing the occupancy data in blue

39
40 Maximum Thread Blocks Per Multip! Blocks
41 Limited by Max Warps / Blocks per Multiprocessor 8
42 Limited by Registers per Multiprocessor

43 Limited by Shared Memory per Multiprocessor 16

44 Thread Block Limit Per Multiprocessor highlighted

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Multiprocessor
Warp Occupancy

Varying Block Size Varying Register Count
48
40
2 52
-3
83
24
£
£e
16 2
8
0
16 80 144 208 272 336 400 464 cee s B RERE RSN EE RN ERERScco=Snvm
OO ®
Threads Per Block Registers Per Thread

Multiprocessor
Warp Occupancy

Varying Shared Memory Usage

&

&

]

[N)
=

-
o

@

(=]

“ CUDA: optimizing your application

1. Coalescing

2. Shared Memory

3. Occupancy

4. Shared Memory Bank Conflicts

Shared Memory Banks

0 Shared memory is banked
Only matters for threads within a warp

Full performance with some restrictions

®m Threads can each access different banks

® Or can all access the same value
1 Consecutive words are in different banks

0 If two or more threads access the same bank but
different value, we get bank conflicts

Bank Addressing Examples: OK

Thread 15

No Bank Conflicts

Thread O

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

v v v v v v \ 4 v

v

Bank O
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

Bank 15

= No Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

%

o~

v

Bank O
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

Bank 15

Bank Addressing Examples: BAD

= 2-way Bank Conflicts = 8-way Bank Conflicts
I eal @ Bank O Thread 0 X8, Bank 0
Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
Thread 3 Bank 3 Thread 3 .
Thread 4 Bank 4 Thread 4 °
: Bank 5 Thread 5 Bank 7
° Bank 6 Thread 6 Bank 8
Bank 7 Thread 7
Thread 8 om‘ rec: x8 ch‘k 9
Thread @ ® ® °
[) (()
Thread 10

Thread 11 Bank 15 Thread 15 Bank 15

Trick to Assess Performance Impact
R

0 Change all shared memory reads to the same value
0 All broadcasts = no conflicts

0 Will show how much performance could be
improved by eliminating bank conflicts

0 The same doesn’t work for shared memory writes
So, replace shared memory array indices with

threadIdx.x

(Could also be done for the reads)

- OpenCL:
Programming GPUs, CPUs, APUs

Portability
RN

0 Inter-family vs inter-vendor
NVIDIA Cuda runs on all NVIDIA GPU families
OpenCL runs on all GPUs, Cell, CPUs

0 Parallelism portability
Different architecture requires different granularity
Task vs data parallel

01 Performance portability

Can we express platform-specific optimizations?

The Khronos group
s

/

Weodephy CREATIVE oyply o m digia E oMY Eentants @ DRLITITT

206 TAL AMA

ity Google covninemeer pangre @wens of.. [bln] _@1 HUONE TBR{ [rof ITETECH.

AMDI1 ARM S ERICSSON 2 - “freescale-
. Apple te K H R\)Nc.oous, Q NOKIA @
E Over 100 companies creating

visual computing standards 03@”2
w (3E] Imagination Board of Promoters QUAI.CDMM ms"lﬂ%xasm

Mstar Jircocipe wagy Movidius @ Gros NEC QA ol "Els 0N2 S)Openye \90"“ o packetvideo

softw.

EEEEEY

,..39

” 0% SwmiMiow g = SoftBank _ 6 ﬁ SYMBIAN cAvumi 7Terecrups ~~TSS_ EOETE Silicon

TOSHIBA .~ Q O e _ Bl Viks | vmwaoe & e 9" T o

YAMAHA

OpenCL: Open Compute Language
NS

01 Architecture independent
0 Explicit support for many-cores

1 Low-level host API

Uses C library, no language extensions

0 Separate high-level kernel language

Explicit support for vectorization
01 Run-time compilation

01 Architecture-dependent optimizations
Still needed

Possible

Cuda vs OpenCL Terminology

Thread block Work group

Constant memory Constant memory

Local memory Private memory

Cuda vs OpenCL Qualifiers

Functions

__device (no qualifier needed)

Variables

__device __global

Cuda vs OpenCL Indexing
e

blockDim get _local_size()

threadldx get local _id()

Calculate manually get global size()

__syncthreads () — barrier()

Vector add: Cuda vs OpenCL kernel

__global void CUDA
vectorAdd (float* a, float* b, float* c) {
int index = blockIdx.x * blockDim.x + threadIlIdx.x;
c[index] = a[index] + b[index];

__kernel void
vectorAdd(global float* a, (global float* b,
__global float* c) {

int index = get global id(0);

c[index] = a[index] + b[index];

} OpenCL

OpenCL VectorAdd host code (1)
i

const size t workGroupSize = 256;
const size t nrWorkGroups = 3;

const size t totalSize = nrWorkGroups * workGroupSize;

cl platform id platform;
clGetPlatformIDs (1, &platform, NULL) ;

// create properties list of key/values, O-terminated.
cl context properties props[] = {
CL CONTEXT PLATFORM, (cl context properties)platform,
0

};

cl context context = clCreateContextFromType (props,
CL_DEVICE TYPE GPU, 0, 0, 0);

OpenCL VectorAdd host code (2)
i

cl_device_id device;
clGetDevicelIDs (platform, CL DEVICE TYPE DEFAULT, 1,
&device, NULL) ;

// create command queue on lst device the context reported
cl command queue commandQueue =

clCreateCommandQueue (context, device, 0, 0);

// create & compile program
cl program program = clCreateProgramWithSource (context, 1,
&programSource, 0, 0);

clBuildProgram(program, 0, 0, 0, 0, 0);

// create kernel
cl kernel kernel = clCreateKernel (program, "vectorAdd",O0);

OpenCL VectorAdd host code (3)
iz

float* A, B, C = new float[totalSize]; // alloc host vecs

// initialize host memory here...

// allocate device memory

cl mem deviceA = clCreateBuffer (context,
CL MEM READ ONLY | CL MEM COPY HOST PTR,
totalSize * sizeof(cl float), A, 0);

cl mem deviceB = clCreateBuffer (context,
CL MEM READ ONLY | CL_MEM COPY HOST PTR,
totalSize * sizeof(cl float), B, 0);

cl mem deviceC = clCreateBuffer (context,
CL MEM WRITE ONLY, totalSize * sizeof(cl float), 0, 0);

OpenCL VectorAdd host code (4)
Sz |

// setup parameter values
clSetKernelArg(kernel, 0, sizeof(cl mem), &deviceAd);
clSetKernelArg(kernel, 1, sizeof(cl mem), &deviceB);

clSetKernelArg(kernel, 2, sizeof(cl mem), &deviceC);

clEnqueueNDRangeKernel (commandQueue, kernel, 1, O,

&totalSize, &workGroupSize, 0,0,0); // execute kernel

// copy results from device back to host, blocking
clEnqueueReadBuffer (commandQueue, deviceC, CL TRUE, O,
totalSize * sizeof(cl float), C, 0, 0, 0);

delete[] A, B, C; // cleanup
clReleaseMemObject (deviceA) ; clReleaseMemObject (deviceB) ;
clReleaseMemObject (deviceC) ;

n Summary and Conclusions

Summary and conclusions

0 Higher performance cannot be reached by
increasing clock frequencies anymore

0 Solution: introduction of large-scale parallelism

0 Multiple cores on a chip

Today:
m Up to 48 CPU cores in a node
m Up to 3200 compute elements on a single GPU

Host system can contain multiple GPUs: 10,000+ cores

We can build clusters of these nodes!

0 Future: 100,000s — millions of cores?

Summary and conclusions

L 74

0 Many different types of many-core hardware

0 Very different properties
Performance
Programmability
Portability

0 It's all about the memory

01 Choose the right platform for your application
Arithmetic intensity / Operational intensity

Roofline model

Open questions
R

0 New application domains — e.g., signal processing,
graph processing.
Perfomrance analysis
Peformance prediction
Modeling
1 Memory patterns understanding, description,
detection, automatic improvement

Local memory usage

1 Heterogeneous computing
Using both the host and the device

0 Application-device fitting

Questions?
ECE

0 Slides are /will be available

0 If you are interested in working with us on using
GPUs for new applications, let us know!

A.LVarbanescu@uva.nl

