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Graphics in 1980 
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Graphics in 2000 
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Realism of modern GPUs 

http://www.youtube.com/watch?
v=bJDeipvpjGQ&feature=pla
yer_embedded#t=49s 

Courtesy 
techradar.com 
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TODO List 
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1.  Multi and many-core hardware  
2.  GPGPUs  
3.  CUDA 
4.  Advanced CUDA 
5.  (some) OpenCL 



Multi-cores = Intel processors with multiple, 
homogeneous cores 
Many-cores = GPUs & alikes  

Why many-cores? -1 



Moore’s Law 

¤ Gordon Moore (co-founder of Intel) predicted in 1965 
that the transistor density of semiconductor chips would 
double roughly every 18 months. 

“The complexity for minimum component costs has increased at a rate of 
roughly a factor of two per year ... Certainly over the short term this rate can 
be expected to continue, if not to increase....” Electronics Magazine 1965 
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Transistor Counts (Intel) 
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Revolution in Processors 

¨  Chip density is 
continuing to 
increase about 2x 
every 2 years 

¨  BUT 
¤ Clock speed is not 
¤  ILP is not  
¤ Power is not  
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New ways to use transistors 
10 

¨  Parallelism on-chip: multi-core processors  

¨  “Multicore revolution” 
¤ Every machine will soon be a parallel machine 
¤ What about performance?  
 

¨  Can applications use this parallelism? 
¤ YES, many have to be rewritten from scratch! 

¨  Will all programmers have to be parallel 
programmers? 
¤ YES, implicit or explicit! 



Top500 [1/4] 
11 

¨  State of the art in HPC (top500.org) 
¤ Trial for all new HPC architectures  

Accelerated! 

Accelerated! 

195 cores/node!  



Top500: cores per socket  
12 



Top500: Accelerators 
13 



China's Tianhe-1A 

#10 in top500 list – June 2013 (#1 in Top500 in November 2010) 
 

4.701 pflops peak 

2.566 pflops max 

 

 
 

 

 

 
14,336 Xeon X5670 processors 

7168 Nvidia Tesla M2050 GPUs x 448 cores = 3,211,264 cores 
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China's Tianhe-2 

#1 in Top500 – June 2013 
 

54.902 pflops peak 

33.862 pflops max 

 

 
 

 

 

 
16.000 nodes  = 16.000 x (2 x Xeon IvyBridge + 3 x Xeon Phi)  

   = 3.120.000 cores ( => 195 cores/node) 
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Top500: prediction 
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GPUs vs. Top500 
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T12 

NV30 NV40 
G70 

G80 

GT200 

3GHz Dual 
Core P4 

3GHz Core2 
Duo 

3GHz Xeon 
Quad 

GPUs vs. CPUs  
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GPUs vs CPUs  
19 



Why do we need many-cores? 

¨  Performance 
¤ Large scale parallelism 

¨  Power Efficiency 
¤ Use transistors more efficiently 

¨  Price (GPUs) 
¤ Game market is huge, bigger than Hollywood 
¤ Mass production, economy of scale 
¤ “spotty teenagers” pay for our HPC needs! 

¨  Prestige  
¤ Reach ExaFLOP by 2019  
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GPUs = the hardware  
GPGPU = general purpose GPU  

  

History 0 



GPGPU History 
22 

¨  Current generation: NVIDIA Kepler 
¤ 7.1B transistors 
¤ More cores, more parallelism, more performance  

1995 2000 2005 2010 

RIVA 128 
3M xtors 

GeForce® 256 
23M xtors 

GeForce FX 
125M xtors 

GeForce 8800 
681M xtors 

GeForce 3  
60M xtors 

“Fermi” 
3B xtors 



GPGPU History 
23 

¨  Use Graphics primitives for HPC 
¤  Ikonas [England 1978] 
¤ Pixel Machine [Potmesil & Hoffert 1989] 
¤ Pixel-Planes 5 [Rhoades, et al. 1992] 

¨  Programmable shaders, around 1998 
¤ DirectX / OpenGL 
¤ Map application onto graphics domain! 

¨  GPGPU 
¤ Brook (2004), Cuda (2007), OpenCL (Dec 2008), ... 



Another GPGPU history 
24 



GPUs @ AMD 
25 



GPU @ ARM 
26 



 The hardware 1 



Integration into host system 
28 

n  Typically PCI Express 2.0 x16 
n  Theoretical speed 8 GB/s 

n  protocol overhead → 6 GB/s 

n  In reality: 4 – 6 GB/s 
n  V3.0 recently available 

n  Double bandwidth 
n  Less protocol overhead 



Lessons from the graphics pipeline  
29 

¨  Throughput is the main focus 
¤ must paint every pixel within frame time 
¤  scalability 

¨  Create, run, and retire lots of threads very rapidly 
¤ measured 14.8 billion thread/s on increment() kernel 

¨  Use multithreading to hide latency 
¤ 1 stalled thread is OK if 100 are ready to run 



Key GPU architectural ideas 
30 

¨  Data parallel, like a vector machine 
¤  There, 1 thread issues parallel vector instructions 

¨  SIMT (Single Instruction Multiple Thread) execution 
¤ Many threads work on a vector, each on a different element 
¤  They all execute the same instruction 
¤ HW automatically handles divergence 

¨  Hardware multithreading 
¤ HW resource allocation & thread scheduling 
¤ HW relies on threads to hide latency 
¤ Context switching is (practically) free 



CPU vs. GPU 
31 

¨  Different goals produce different designs 
¤ GPU assumes work load is highly parallel 
¤ CPU must be good at everything, parallel or not 

¨  CPU: minimize latency experienced by 1 thread 
¤ big on-chip caches 
¤  sophisticated control logic 

¨  GPU: maximize throughput of all threads 
¤ # threads in flight limited by resources => lots of 

resources (registers, etc.) 
¤ multithreading can hide latency => no big caches 
¤  share control logic across many threads 



Chip area CPU vs GPU 
32 

Control 

ALU ALU 

ALU ALU 

Cache 

CPU 

GPU 



It's all about the memory 

33 

core Memory channel 

core core 

core core 

core core 

core core 

core core 

core core 

core core 

core core 

Memory channel 

CPU many-core 



CPU vs GPU 
34 

¨  Movie 
¨  The Mythbusters 

¤ Jamie Hyneman & Adam Savage 
¤ Discovery Channel 

¨  Appearance at NVIDIA’s NVISION 2008 



ATI GPUs 35 



Latest generation ATI 
36 

¨  Southern Islands 
¨  1 chip: HD 7970 

¤ 2048 cores 
¤ 264 GB/sec memory bandwidth 
¤ 3.8 Tflops single, 947 Gflops double precision 
¤ Maximum power: 250 Watts 
¤ 399 euros! 

¨  2 chips: HD 7990 
¤ 4096 cores, 7.6 Tflops 

¨  Note: the entire 36-node DAS-4 TUD cluster has 2.2 
Tflops 



ATI programming models 
37 

¨  Low-level: CAL (assembly) 
¨  High-level: Brook+ 

¤ Originally developed at Stanford University 
¤ Streaming language 
¤ Performance is not great 

¨  Now 
¤ OpenCL 

¨  Near future  
¤ HSA – Heterogeneous System Architecture  
¤ HSAIL – HSA Intermediate Language   
¤ Targeted at Fusion devices, single source code   



GPU Hardware: NVIDIA 38 
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Fermi 
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¨  Consumer: GTX 480, 580 
¨  HPC: Tesla C2050 

¤ More memory, ECC 
¤  1.0 Tlop SP 
¤  515 GFlop SP 

¨  16 streaming 
multiprocessors (SM) 
¤ GTX 580: 16 
¤ GTX 480: 15 
¤ C2050: 14 

¨  SMs are independent 
¨  768 KB L2 cache 
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Fermi Streaming Multiprocessor (SM) 
40 

¨  32 cores per SM  
(512 cores total) 

¨  64KB configurable  
L1 cache / shared memory 

¨  32,768 32-bit registers 



CUDA Core Architecture 
41 

¨  Decoupled floating point 
and integer data paths  

¨  Double precision throughput 
is 50% of single precision 

¨  Integer operations 
optimized for extended 
precision 
¤  64 bit and wider data 

element size  

¨  Predication field for all 
instructions 

¨  Fused-multiply-add 



Memory Hierarchy 
42 

¨  Configurable L1 cache per SM 
¤ 16KB L1 cache / 48KB Shared 
¤ 48KB L1 cache / 16KB Shared 

¨  Shared 768KB L2 cache 
registers 

Device memory 

L1 cache / shared mem 

L2 cache 

Host memory 
PCI-e 
bus 



Thread 

Per-thread 
Local Memory 

SM 

Per-SM 
Shared 
Memory 

Kernel 0 

Multiple Memory Scopes 
43 

¨  Per-thread private 
memory 
¤ Each thread has its own 

local memory 
¤ Stacks, other private 

data, registers 

¨  Per-SM shared memory 
¤ Small memory close to the 

processor, low latency 
¨  Device memory 

¤ GPU frame buffer 
¤ Can be accessed by any 

thread in any SM 

Kernel 1 
Per-device 

Global 
Memory 

… 

… 



Atomic Operations 
44 

¨  Device memory is not coherent! 

¨  Share data between streaming multiprocessors 

¨  Read / Modify / Write 

¨  Fermi increases atomic performance by 5x to 20x 
¤ Still, much slower than non-atomic access 



ECC (Error-Correcting Code) 
45 

¨  All major internal memories are ECC protected 
¤ Register file, L1 cache, L2 cache 

¨  DRAM protected by ECC (on Tesla only) 

¨  ECC is a must have for many computing applications 



NVIDIA Kepler 
46 

¨  New core - SMX (successor of SM)  
¤ 192 single precision FMAs per cycle 

n 4x compared to Fermi’s 48  

¤ GTX 680 has 8 cores 

¨  Dynamic parallelism  
¨  HyperQ 



Getting technical 
47 



CUDA: 
Programming NVIDIA GPUs 

2 



CUDA 
49 

¨  CUDA: Scalable parallel programming 
¤ C/C++ extensions 
¤ Higher level extensions, too 

¨  Provide straightforward mapping onto hardware 
¤ Good fit to GPU architecture 
¤ Maps well to multi-core CPUs too 

¨  Scale to 1000s of cores & 100,000s of threads 
¤ GPU threads are lightweight — create / switch is free 
¤ GPU needs 1000s of threads for full utilization 



Parallel Abstractions in CUDA 
50 

¨  Hierarchy of concurrent threads 
¤ Concurrent thread blocks  

¨  Lightweight synchronization primitives 

¨  Shared memory model for cooperating threads 



Hierarchy of concurrent threads 
51 

¨  Parallel kernels composed of many threads 
¤ All threads execute the same kernel = sequential 

program 

¨  Threads are grouped into thread blocks 
¤ Threads in the same block can cooperate 
¤ Threads in different blocks cannot cooperate 

¨  All thread blocks are organized in a Grid 
¤ 1D or 2D or 3D  

¨  Threads and blocks have unique IDs 

Thread t 

Block b 



Grids, Thread Blocks and Threads 

Grid 
Thread Block 0, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 



Indexing 
53 

¨  dim3 threadsPerBlock(3, 4); 
¤  threadsPerBlock.x = 3 
¤  threadsPerBlock.y = 4   
¤  threadID = (threadIdx.x, threadIdx.y) 

¨  dim3 numBlocks(2, 3); 
¤ blockDim.x = 2 
¤ blockDim.y=3 
¤ blockID = (blockIdx.x, blockIdx.y) 

¨  Launch kernel: 
myKernel<<<numBlocks, threadsPerBlock>>>(…); 

Grid 
Thread Block 0, 0 
0,
0 0,

1 0,
2 0,

3 
1,
0 1,

1 1,
2 2,

3 
2,
0 2,

1 2,
2 2,

3 

Thread Block 0, 1 
0,
0 0,

1 0,
2 0,

3 
1,
0 1,

1 1,
2 2,

3 
2,
0 2,

1 2,
2 2,

3 

Thread Block 0, 2 
0,
0 0,

1 0,
2 0,

3 
1,
0 1,

1 1,
2 2,

3 
2,
0 2,

1 2,
2 2,

3 
Thread Block 1, 0 
0,
0 0,

1 0,
2 0,

3 
1,
0 1,

1 1,
2 2,

3 
2,
0 2,

1 2,
2 2,

3 

Thread Block 1, 1 
0,
0 0,

1 0,
2 0,

3 
1,
0 1,

1 1,
2 2,

3 
2,
0 2,

1 2,
2 2,

3 

Thread Block 1, 2 
0,
0 0,

1 0,
2 0,

3 
1,
0 1,

1 1,
2 2,

3 
2,
0 2,

1 2,
2 2,

3 



CUDA Model of Parallelism 
54 

¨  CUDA virtualizes the physical hardware 
¤  Devices have  

n  Different numbers of SMs 
n  Different compute capabilities (Fermi = 2.0, before: 1.0, 1.1, 1.2) 

¤  block is a virtualized streaming multiprocessor (threads, shared memory) 
¤  thread is a virtualized scalar processor (registers, PC, state) 

¨  Scheduled onto physical hardware without pre-emption 
¤  threads/blocks launch & run to completion 
¤  blocks have to be independent 

• • • 
Block Shared 

Memory 

Block Shared 
Memory 

Device Memory 



Memory Spaces in CUDA 
55 

Grid 

Device Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 



Thread 

Per-thread 
Local Memory 

SM 

Per-SM 
Shared 
Memory 

Kernel 0 

Multiple Memory Scopes 
56 

¨  Per-thread private 
memory 
¤ Each thread has its own 

local memory 
¤ Stacks, other private 

data, registers 

¨  Per-SM shared memory 
¤ Small memory close to the 

processor, low latency 
¨  Device memory 

¤ GPU frame buffer 
¤ Can be accessed by any 

thread in any SM 

Kernel 1 
Per-device 

Global 
Memory 

… 

… 



Device Memory 
57 

¨  CPU and GPU have separate memory spaces 
¤ Data is moved across PCI-e bus 
¤ Use functions to allocate/set/copy memory on GPU 
¤ Very similar to corresponding C functions 

¨  Pointers are just addresses 
¤ Can’t tell from the pointer value whether the address is 

on CPU or GPU 
¤ Must exercise care when dereferencing: 

n Dereferencing CPU pointer on GPU will likely crash 
n Same for vice versa 



Additional memories 

¨  Textures 
¤ Read-only 
¤ Data resides in device memory 
¤ Different read path, includes specialized caches 

¨  Constant memory 
¤ Data resides in device memory 
¤ Manually managed 
¤ Small (e.g., 64KB) 
¤ Assumes all threads in a block read the same addresses 

n Serializes otherwise 



GPU Memory Allocation / Release 
59 

¨  Host (CPU) manages device (GPU) memory: 
¤  cudaMalloc(void **pointer, size_t nbytes) 
¤  cudaMemset(void *pointer, int val, size_t count) 
¤  cudaFree(void* pointer) 

int n = 1024; 
int nbytes = n * sizeof(int); 
int* data = 0; 
cudaMalloc(&data, nbytes); 
cudaMemset(data, 0, nbytes); 
cudaFree(data); 



Data Copies 
60 

¨  cudaMemcpy(void *dst, void *src, 
     size_t nbytes, 
     enum cudaMemcpyKind direction); 

¤  returns after the copy is complete 
¤  blocks CPU thread until all bytes have been copied 
¤  doesn’t start copying until previous CUDA calls complete 

¨  enum cudaMemcpyKind 
¤ cudaMemcpyHostToDevice 
¤ cudaMemcpyDeviceToHost 
¤ cudaMemcpyDeviceToDevice 

¨  Non-blocking copies are also available 
¤ DMA transfers, overlap computation and communication 



CUDA Variable Type Qualifiers 
61 

Variable declaration Memory Scope Lifetime 

int var; register thread thread 

int array_var[10]; local thread thread 

__shared__   int shared_var; shared block block 

__device__   int global_var; device grid application 

__constant__ int constant_var; constant grid application 



C for CUDA 
62 

¨  Philosophy: provide minimal set of extensions necessary 

¨  Function qualifiers: 
__global__ void my_kernel() { } 
__device__ float my_device_func() { } 

¨  Execution configuration: 
dim3 gridDim(100, 50);  // 5000 thread blocks 
dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M total) 
my_kernel <<< gridDim, blockDim >>> (...); // Launch kernel 

¨  Built-in variables and functions valid in device code: 
dim3 gridDim;   // Grid   dimension 
dim3 blockDim;  // Block  dimension 
dim3 blockIdx;  // Block  index 
dim3 threadIdx; // Thread index 

 
void syncthreads(); // Thread synchronization 



Calculating the global thread index 
63 

¨  “global” thread index: 
 blockDim.x * blockIdx.x + threadIdx.x; 

 

  

Grid 
Thread Block 0 

0 1 2 3 
Thread Block 1 

0 1 2 3 
Thread Block 2 

0 1 2 3 

blockDim.X 



64 

Grid 
Thread Block 0 

0 1 2 3 
Thread Block 1 

0 1 2 3 
Thread Block 2 

0 1 2 3 

blockDim.X 

Calculating the global thread index 
64 

¨  “global” thread index: 
 blockDim.x * blockIdx.x + threadIdx.x; 

 

     4      *     2      +     1    = 9 



Vector add 
65 

 

 

 

 

 

void vector_add(int size, float* a, float* b, float* c) { 

    for(int i=0; i<size; i++) { 

        c[i] = a[i] + b[i];   

    } 

} 



Vector add kernel: GPU & Host 
66 

// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) { 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    C[i] = A[i] + B[i]; 

} 

 

int main() { 

  // initialization code here ... 

 N = 5120; 

  // launch N/256 blocks of 256 threads each 

  vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC); 

  // cleanup code here ... 

} 

GPU code 

Host code 

(can be in the same file) 



Vector add kernel: GPU & Host 
67 

// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) { 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    C[i] = A[i] + B[i]; 

} 

 

 

 

int main() { 

  // initialization code here ... 

 N = 5000; 

  // launch N/256 blocks of 256 threads each 

  vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC); 

  // cleanup code here ... 

} 

GPU code 

Host code 

(can be in the same file) 

What if N = 5000?  



Vector add kernel: GPU & Host 
68 

// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) { 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

   if (i<N) C[i] = A[i] + B[i]; 

} 

 

 

 

int main() { 

  // initialization code here ... 

 N = 5000; 

  // launch N/256 blocks of 256 threads each 

  vector_add<<< N/256+1,256 >>>(deviceA, deviceB, 
deviceC); 

  // cleanup code here ... 

} 

GPU code 

Host code 

(can be in the same file) 

What if N = 5000?  



69 

int main(int argc, char** argv) { 

  float *hostA, *deviceA, *hostB, *deviceB, *hostC, *deviceC; 

  int size = N * sizeof(float); 

 

  // allocate host memory 

  hostA = malloc(size); 

  hostB = malloc(size); 

  hostC = malloc(size); 

 

  // initialize A, B arrays here... 

 

  // allocate device memory 

  cudaMalloc(&deviceA, size); 

  cudaMalloc(&deviceB, size); 

  cudaMalloc(&deviceC, size); 

Vector add: Host 



70 

 // transfer the data from the host to the device 
 cudaMemcpy(deviceA, hostA, size, cudaMemcpyHostToDevice); 

 cudaMemcpy(deviceB, hostB, size, cudaMemcpyHostToDevice); 
 

 // launch N/256 blocks of 256 threads each 
 vector_add<<<N/256, 256>>>(deviceA, deviceB, deviceC); 

 
 // transfer the result back from the GPU to the host 

 cudaMemcpy(hostC, deviceC, size, cudaMemcpyDeviceToHost); 

} 

Vector add: Host 



Summary 

¨  Write kernel(s)  
¤ Sequential code  
¤ Written per-thread  

¨  Determine block geometry  
¤ Threads per block, blocks per grid  
¤ Number of grids (>= number of kernels) 

¨  Write host code  
¤ Memory initialization and copying to device  
¤ Kernel(s) launch(es)  
¤ Results copying to host   

¨  Optimize the kernels  

71 



Advanced CUDA:  
Scheduling, Synchronization, Atomics  

3 



Thread Scheduling 

¨  Order in which thread blocks are scheduled is 
undefined! 
¤ any possible interleaving of blocks should be valid 
¤ presumed to run to completion without preemption 
¤ can run in any order 
¤ can run concurrently OR sequentially 

¨  Order of threads within a block is also undefined! 

73 



Global synchronization 

¨  Q: How do we do global synchronization with these 
scheduling semantics? 
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Global synchronization 

¨  Q: How do we do global synchronization with these 
scheduling semantics? 

¨  A1: Not possible! 
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Global synchronization 

¨  Q: How do we do global synchronization with these 
scheduling semantics? 

¨  A1: Not possible! 
¨  A2: Finish a grid, and start a new one! 
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Global synchronization 

¨  Q: How do we do global synchronization with these 
scheduling semantics? 

¨  A1: Not possible! 
¨  A2: Finish a grid, and start a new one! 

step1<<<grid1,blk1>>>(...); 

// CUDA ensures that all writes from step1 are complete. 

step2<<<grid2,blk2>>>(...); 

¨  We don't have to copy the data back and forth! 
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Atomics 

¨  Guarantee that only a single thread has access to a 
piece of memory during an operation 
¤ No loss of data 
¤ Ordering is still arbitrary 

¨  Different types of atomic instructions 
¤ Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor 
¤ On device memory and/or shared memory 

¨  Much more expensive than load + operation + store 
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Example: Histogram 

// Determine frequency of colors in a picture. 
// Colors have already been converted into integers 
// between 0 and 255. 
// Each thread looks at one pixel, 
// and increments a counter 
 
__global__ void histogram(int* colors, int* buckets) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int c = colors[i]; 
    buckets[c] += 1; 
} 
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Example: Histogram 

// Determine frequency of colors in a picture. 
// Colors have already been converted into integers 
// between 0 and 255. 
// Each thread looks at one pixel, 
// and increments a counter 
 
__global__ void histogram(int* colors, int* buckets) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int c = colors[i]; 
    buckets[c] += 1; 
} 
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Example: Histogram 

// Determine frequency of colors in a picture. 
// Colors have already been converted into integers 
// between 0 and 255. 
// Each thread looks at one pixel, 
// and increments a counter atomically 
 
__global__ void histogram(int* colors, int* buckets) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int c = colors[i]; 
    atomicAdd(&buckets[c], 1); 
} 
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Coalescing 
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Consider the stride of your accesses 

__global__ void foo(int* input, float3* input2) { 

  int i = blockDim.x * blockIdx.x + threadIdx.x; 

 

  // Stride 1, OK! 

  int a = input[i]; 

 

  // Stride 2, half the bandwidth is wasted 

  int b = input[2*i]; 

 

  // Stride 3, 2/3 of the bandwidth wasted 

  float c = input2[i].x; 

} 
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Example: Array of Structures (AoS) 

struct record { 
    int key; 
    int value; 
    int flag; 
}; 
 
record *d_records; 
cudaMalloc((void**)&d_records, ...); 
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Example: Structure of Arrays (SoA) 

Struct SoA { 
    int* keys; 
    int* values; 
    int* flags; 
}; 
 
SoA d_SoA_data; 
cudaMalloc((void**)&d_SoA_data.keys, ...); 
cudaMalloc((void**)&d_SoA_data.values, ...); 
cudaMalloc((void**)&d_SoA_data.flags, ...); 
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Example: SoA vs AoS 

__global__ void kernel(record* AoS_data, 
                    SoA  SoA_data) { 
  int i = blockDim.x * blockIdx.x + threadIdx.x; 
 
  // AoS wastes bandwidth 
  int key1 = AoS_data[i].key; 
 
  // SoA efficient use of bandwidth 
  int key2 = SoA_data.keys[i]; 
} 
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Memory Coalescing 

¨  Structure of arrays is often better than array of 
structures 

¨  Very clear win on regular, stride 1 access patterns 
¨  Unpredictable or irregular access patterns are 

case-by-case 
¨  Can lose a factor of 10x – 30x! 
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Matrix multiplication example 
90 

¨  C = A * B  
¨  Each element C,i,j  
  = dot(row(A,i),col(B,j))  
¨  Parallelization strategy  

¤ Each thread computes element in C 
¤ 2D kernel 

B 

C A 



Matrix multiplication implementation 
91 

__global__ void mat_mul(float *a, float *b,  

                        float *c, int width)  

{  

  // calc row & column index of output element  

  int row = blockIdx.y*blockDim.y + threadIdx.y;  

  int col = blockIdx.x*blockDim.x + threadIdx.x; 

 
float result = 0;  
 

  // do dot product between row of a and column of b  

  for(int k = 0; k < width; k++) { 

      result += a[row*width+k] * b[k*width+col]; 
} 

  c[row*width+col] = result;  

}  

B
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Matrix multiplication performance 
92 

Loads per dot product term 2 (a and b)  = 8 bytes 
FLOPS 2 (multiply and add) 
AI 2 / 8 = 0.25 
Performance GTX 580 1581 GFLOPs 
Memory bandwidth GTX 580 192 GB/s 
Attainable performance 192 * 0.25 = 48 GFLOPS 
Maximum efficiency 3.0 % of theoretical peak 



Data reuse 
93 

¨  Each input element 
in A and B is read 
WIDTH times 

¨  Load elements into 
shared memory 

¨  Have several 
threads use local 
version to reduce 
the memory 
bandwidth  

B 

C A 
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Using shared memory 
94 

¨  Partition kernel loop into phases  
¨  In each thread block, load a tile 

of both matrices into shared 
memory each phase 

¨  Each phase, each thread 
computes a partial result 

TILE_WIDTH 

B 

A C 
1 

1 

3 

2 3 
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Matrix multiply with shared memory 
95 

__global__ void mat_mul(float *a, float *b,  
                      float *c, int width) { 

  // shorthand  
  int tx = threadIdx.x, ty = threadIdx.y; 
  int bx = blockIdx.x,  by = blockIdx.y; 
 

  // allocate tiles in shared memory  
  __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];  
  __shared__ float s_b[TILE_WIDTH][TILE_WIDTH]; 
 

  // calculate the row & column index  
  int row = by*blockDim.y + ty;  
  int col = bx*blockDim.x + tx; 
 
float result = 0;   



Matrix multiply with shared memory 
96 

  // loop over input tiles in phases 
  for(int p = 0; p < width/TILE_WIDTH; p++) { 
    // collaboratively load tiles into shared memory 
    s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)]; 
    s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col]; 
    __syncthreads(); 
 

    // dot product between row of s_a and col of s_b  
    for(int k = 0; k < TILE_WIDTH; k++) { 
      result += s_a[ty][k] * s_b[k][tx]; 
  } 

    __syncthreads();  
  } 
  

  c[row*width+col] = result;  
} 

B 

A C 
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Use of Barriers in mat_mul 
97 

¨  Two barriers per phase:  
¤ __syncthreads after all data is loaded into shared memory  
¤ __syncthreads after all data is read from shared memory  
¤ Second __syncthreads in phase p guards  

the load in phase p+1  

¨  Use barriers to guard data  
¤ Guard against using uninitialized data  
¤ Guard against corrupting live data  



Matrix multiplication performance 
98 

Original shared memory 

Global loads 2N3 * 4 bytes (2N3 / TILE_WIDTH) * 4 bytes 

Total ops 2N3 2N3 

AI 0.25 0.25 * TILE_WIDTH 

Performance GTX 580 1581 GFLOPs 

Memory bandwidth GTX 580 192 GB/s 

AI needed for peak 1581 / 192 = 8.23 

TILE_WIDTH required to 
achieve peak 

0.25 * TILE_WIDTH = 8.23, 
TILE_WIDTH = 32.9 
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Thread Scheduling 

¨  SM implements zero-overhead warp scheduling 
¤ A warp is a group of 32 threads that runs concurrently on an SM 
¤ At any time, only one of the warps is executed by an SM 
¤ Warps whose next instruction has its inputs ready for consumption 

are eligible for execution 
¤  Eligible Warps are selected for execution on a prioritized 

scheduling policy 
¤ All threads in a warp execute the same instruction when selected 

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4
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Stalling warps 

¨  What happens if all warps are stalled? 
¤ No instruction issued → performance lost 

¨  Most common reason for stalling? 
¤ Waiting on global memory 

¨  If your code reads global memory every couple of 
instructions 
¤ You should try to maximize occupancy 
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Occupancy 

¨  What determines occupancy? 
¤ Number of threads and blocks  
¤ Memory consumption  

¨  Limited hardware resources 
¤ Register usage per thread => may limit number of 

threads 
¤ Shared memory per thread block => may limit number 

of blocks 
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Resource Limits (1) 

¨  Pool of registers and shared memory per SM 
¤  Each thread block grabs registers & shared memory 
¤  If one or the other is fully utilized      no more thread blocks 

TB 0 

Registers Shared Memory 

TB 1 

TB 2 

TB 0 

TB 1 

TB 2 

TB 0 

Registers 

TB 1 
TB 0 

TB 1 

Shared Memory 
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Resource Limits (2) 

¨  Can only have 8 thread blocks per SM 
¤  If they’re too small, can’t fill up the SM 
¤ Need 128 threads / block on gt200 (4 cycles/instruction) 
¤ Need 192 threads / block on Fermi (6 cycles/instruction) 

¨  Higher occupancy has diminishing returns for hiding 
latency 
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Hiding Latency with more threads 
105 



How do you know what you’re using? 

¨  Use “nvcc -Xptxas –v” to get register and 
shared memory usage 

¨  Plug those numbers into CUDA Occupancy 
Calculator 
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Shared Memory Banks 

¨  Shared memory is banked 
¤ Only matters for threads within a warp 
¤ Full performance with some restrictions 

n Threads can each access different banks 
n Or can all access the same value 

¨  Consecutive words are in different banks 
¨  If two or more threads access the same bank but 

different value, we get bank conflicts 
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Bank Addressing Examples: OK 

n  No Bank Conflicts n  No Bank Conflicts 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Bank Addressing Examples: BAD 

n  2-way Bank Conflicts n  8-way Bank Conflicts 

Thread 11 
Thread 10 
Thread 9 
Thread 8 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Trick to Assess Performance Impact  

¨  Change all shared memory reads to the same value 
¨  All broadcasts = no conflicts 
¨  Will show how much performance could be 

improved by eliminating bank conflicts 

¨  The same doesn’t work for shared memory writes 
¤ So, replace shared memory array indices with 
  threadIdx.x 
¤  (Could also be done for the reads) 
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OpenCL: 
Programming GPUs, CPUs, APUs  

5 



Portability 

¨  Inter-family vs inter-vendor 
¤ NVIDIA Cuda runs on all NVIDIA GPU families 
¤ OpenCL runs on all GPUs, Cell, CPUs 

¨  Parallelism portability 
¤ Different architecture requires different granularity 
¤ Task vs data parallel 

¨  Performance portability 
¤ Can we express platform-specific optimizations? 
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The Khronos group 
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OpenCL: Open Compute Language 

¨  Architecture independent 
¨  Explicit support for many-cores 
¨  Low-level host API 

¤ Uses C library, no language extensions 

¨  Separate high-level kernel language 
¤ Explicit support for vectorization 

¨  Run-time compilation 
¨  Architecture-dependent optimizations 

¤ Still needed 
¤ Possible 
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Cuda vs OpenCL Terminology 

CUDA OpenCL 
Thread Work item 
Thread block Work group 
Device memory Global memory 
Constant memory Constant memory 
Shared memory Local memory 
Local memory Private memory 

117 



Cuda vs OpenCL Qualifiers 

CUDA OpenCL 
__constant__ __constant 
__device__ __global 
__shared__ __local 

CUDA OpenCL 
__global__ __kernel 
__device__ (no qualifier needed) 

Functions 

Variables 
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Cuda vs OpenCL Indexing 

CUDA OpenCL 
gridDim get_num_groups() 
blockDim get_local_size() 
blockIdx get_group_id() 
threadIdx get_local_id() 
Calculate manually get_global_id() 
Calculate manually get_global_size() 

__syncthreads() → barrier() 
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Vector add: Cuda vs OpenCL kernel 

__global__ void  
vectorAdd(float* a, float* b, float* c) { 
  int index = blockIdx.x * blockDim.x + threadIdx.x; 
  c[index] = a[index] + b[index]; 
} 
 
__kernel void  
vectorAdd(__global float* a, __global float* b, 
          __global float* c) { 
    int index = get_global_id(0); 
    c[index] = a[index] + b[index]; 
} 

CUDA 

OpenCL 
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OpenCL VectorAdd host code (1) 

const size_t workGroupSize = 256; 
const size_t nrWorkGroups = 3; 

const size_t totalSize = nrWorkGroups * workGroupSize; 
 

cl_platform_id platform; 
clGetPlatformIDs(1, &platform, NULL); 

   
// create properties list of key/values, 0-terminated. 

cl_context_properties props[] = { 

  CL_CONTEXT_PLATFORM, (cl_context_properties)platform,  
  0 

}; 
   

cl_context context = clCreateContextFromType(props, 
CL_DEVICE_TYPE_GPU, 0, 0, 0); 
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OpenCL VectorAdd host code (2) 

cl_device_id device; 
clGetDeviceIDs(platform, CL_DEVICE_TYPE_DEFAULT, 1,  

               &device, NULL); 
 

// create command queue on 1st device the context reported 
cl_command_queue commandQueue =  

    clCreateCommandQueue(context, device, 0, 0); 
 

// create & compile program 

cl_program program = clCreateProgramWithSource(context, 1,  
    &programSource, 0, 0); 

clBuildProgram(program, 0, 0, 0, 0, 0); 
 

// create kernel 
cl_kernel kernel = clCreateKernel(program, "vectorAdd",0); 
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OpenCL VectorAdd host code (3) 

float* A, B, C = new float[totalSize]; // alloc host vecs 
// initialize host memory here... 

 
// allocate device memory 

cl_mem deviceA = clCreateBuffer(context, 
  CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,      

  totalSize * sizeof(cl_float), A, 0); 
 

cl_mem deviceB = clCreateBuffer(context, 

  CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,      
  totalSize * sizeof(cl_float), B, 0); 

 
cl_mem deviceC = clCreateBuffer(context,  

  CL_MEM_WRITE_ONLY, totalSize * sizeof(cl_float), 0, 0); 
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OpenCL VectorAdd host code (4) 

// setup parameter values 
clSetKernelArg(kernel, 0, sizeof(cl_mem), &deviceA); 

clSetKernelArg(kernel, 1, sizeof(cl_mem), &deviceB); 
clSetKernelArg(kernel, 2, sizeof(cl_mem), &deviceC); 

 
clEnqueueNDRangeKernel(commandQueue, kernel, 1, 0, 

  &totalSize, &workGroupSize, 0,0,0); // execute kernel 
 

// copy results from device back to host, blocking 

clEnqueueReadBuffer(commandQueue, deviceC, CL_TRUE, 0,  
  totalSize * sizeof(cl_float), C, 0, 0, 0); 

 
delete[] A, B, C; // cleanup 

clReleaseMemObject(deviceA); clReleaseMemObject(deviceB); 
clReleaseMemObject(deviceC); 
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Summary and conclusions 

¨  Higher performance cannot be reached by 
increasing clock frequencies anymore 

¨  Solution: introduction of large-scale parallelism 
¨  Multiple cores on a chip 

¤ Today: 
n Up to 48 CPU cores in a node 
n Up to 3200 compute elements on a single GPU 

¤ Host system can contain multiple GPUs: 10,000+ cores 
¤ We can build clusters of these nodes! 

¨  Future: 100,000s – millions of cores? 
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Summary and conclusions 

¨  Many different types of many-core hardware 
¨  Very different properties 

¤ Performance 
¤ Programmability 
¤ Portability 

¨  It's all about the memory 
¨  Choose the right platform for your application 

¤ Arithmetic intensity / Operational intensity 
¤ Roofline model 
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Open questions   

¨  New application domains – e.g., signal processing, 
graph processing.   
¤ Perfomrance analysis 
¤ Peformance prediction 
¤ Modeling  

¨  Memory patterns understanding, description, 
detection, automatic improvement  
¤ Local memory usage  

¨  Heterogeneous computing 
¤ Using both the host and the device  

¨  Application-device fitting  
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Questions?  
129 

¨  Slides are/will be available  
¨  If you are interested in working with us on using 

GPUs for new applications, let us know!  
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