DAS 1-4: Experiences with the Distributed ASCI Supercomputers

Henri Bal bal@cs.vu.nl

Kees Verstoep versto@cs.vu.nl

Vrije Universiteit Amsterdam

vrije Universiteit

Introduction

- DAS: shared distributed infrastructure for experimental computer science research
 - Controlled experiments for CS, *not production*
- . 16 years experience with funding & research
- Huge impact on Dutch CS

DAS-2

DAS-1

DAS-3

DAS-4

Overview

- . Historical overview of the DAS systems
- . How to organize a national CS testbed
- . Examples of research done on DAS at the VU
 - Ask Adam Belloum for an UvA perspective ☺

Outline

- . DAS (pre-)history
- DAS organization
- DAS-1 DAS-4 systems
- . DAS-1 research
- . DAS-2 research
- . DAS-3 research
- . DAS-4 research
- . DAS conclusions

Historical perspective

VU (pre-)history

- Andy Tanenbaum already built a cluster around 1984
 - Pronet token ring network
 - . 8086 CPUs
 - . (no pictures available)

- . He built several Amoeba processor pools
 - MC68000, MC68020, MicroSparc
 - VME bus, 10 Mb/s Ethernet, Myrinet, ATM

Amoeba processor pool (Zoo, 1994)

DAS-1 background: ASCI

- Research schools (Dutch product from 1990s)
 - Stimulate top research & collaboration
 - Organize Ph.D. education
- ASCI (1995):
 - Advanced School for Computing and Imaging
 - About 100 staff & 100 Ph.D. students from TU Delft, Vrije Universiteit, U. of Amsterdam, Leiden, Utrecht, TU Eindhoven, TU Twente, ...

Motivation for DAS-1

- CS/ASCI needs its own infrastructure for
 - Systems research and experimentation
 - Distributed experiments
 - Doing many small, interactive experiments
- Need distributed experimental system, rather than centralized production supercomputer

Funding

- DAS proposals written by ASCI committees
 - Chaired by Tanenbaum (DAS-1), Bal (DAS 2-5)
- NWO (national science foundation) funding for all 4 DAS systems (100% success rate)
 - About 900 K€ funding per system, 300 K€ matching by participants, extra funding from VU
 - . → Currently preparing for DAS-5
- ASCI committee also acts as steering group

Netherlands Organisation for Scientific Research

Goals of DAS-1

- . Goals of DAS systems:
 - Ease collaboration within ASCI
 - Ease software exchange
 - Ease systems management
 - Ease experimentation

- Want a clean, laboratory-like system
- . Keep DAS simple and homogeneous
 - Same OS, local network, CPU type everywhere
 - . Single (replicated) user account file
- [ACM SIGOPS 2000] (paper with 50 authors)

Behind the screens

Artist's Rendition of the First OS Discussion

Artist's Rendition of the Second OS Discussion

Source: Tanenbaum (ASCI'97 conference)

DAS-1 (1997-2002) A homogeneous wide-area system

200 MHz Pentium Pro 128 MB memory Myrinet interconnect BSDI → RedHat Linux Built by Parsytec

vrije Universitei

DAS-2 (2002-2007) a Computer Science Grid

two 1 GHz Pentium-3s ≥1 GB memory 20-80 GB disk

Myrinet interconnect Redhat Enterprise Linux Globus 3.2 PBS → Sun Grid Engine Built by IBM

vrije Universiteit

DAS-3 (2007-2010) An optical grid

dual AMD Opterons 4 GB memory 250-1500 GB disk More heterogeneous: 2.2-2.6 GHz Single/dual core nodes Myrinet-10G (exc. Delft) Gigabit Ethernet Scientific Linux 4 Globus, SGE Built by ClusterVision

DAS-4 (2011) Testbed for clouds, diversity & Green IT

Performance

	DAS-1	DAS-2	DAS-3	DAS-4
# CPU cores	200	400	792	1600
SPEC CPU2000 INT (base)	78.5	454	1445	4620
SPEC CPU2000 FP (base)	69.0	329	1858	6160
1-way latency MPI (μs)	21.7	11.2	2.7	1.9
Max. throughput (MB/s)	75	160	950	2700
Wide-area bandwidth (Mb/s)	6	1000	40000	40000

Impact of DAS

• Major incentive for VL-e → 20 M€ funding

- Virtual Laboratory for e-Science
- Collaboration SURFnet on DAS-3 & DAS-4
 - SURFnet provides dedicated 10 Gb/s light paths
- About 10 Ph.D. theses per year use DAS
- Many other research grants

Outline

- DAS (pre-)history
- DAS organization
- DAS-1 DAS-4 systems
- . DAS-1 research
- . DAS-2 research
- . DAS-3 research
- . DAS-4 research
- . DAS conclusions

DAS research agenda

- Pre-DAS: Cluster computing
- DAS-1: Wide-area computing
 - DAS-2: Grids & P2P computing
 - DAS-3: e-Science & optical Grids
 - DAS-4: Clouds, accelerators & green IT

Overview VU research

	Algorithms & applications	Programming systems
DAS-1	Albatross	Manta MagPle
DAS-2	Search algorithms Awari	Satin
DAS-3	StarPlane Model checking	lbis
DAS-4	Multimedia analysis Semantic web	lbis

DAS-1 research

- Albatross: optimize wide-area algorithms
- Manta: fast parallel Java
- MagPle: fast wide-area collective operations

Albatross project

- Study algorithms and applications for widearea parallel systems
- Basic assumption: wide-area system is hierarchical

- Connect clusters, not individual workstations
- General approach
 - Optimize applications to exploit hierarchical structure → most communication is local
- ▶ [HPCA 1999]

Wide-area algorithms

- Discovered numerous optimizations that reduce wide-area overhead
 - Caching, load balancing, message combining ...
- Performance comparison between
 - 1 small (15 node) cluster, 1 big (60 node) cluster, wide-area (4*15 nodes) system

Manta: high-performance Java

- Native compilation (Java \rightarrow executable)
- Fast RMI protocol

[ACM TOPLAS 2001]

- Compiler-generated serialization routines
- Factor 35 lower latency than JDK RMI
- Used for writing wide-area applications

MagPle: wide-area collective communication

- Collective communication among many processors
 - e.g., multicast, all-to-all, scatter, gather, reduction
- MagPle: MPI's collective operations optimized for hierarchical wide-area systems
- Transparent to application programmer
- [PPoPP'99]

MPICH (WAN-unaware)

- . Wide-area latency is chained
- Data is sent multiple times over same WAN-link
- MagPle (WAN-optimized)
 - Each sender-receiver path contains ≤1 WAN-link
 - No data item travels multiple times to same cluster

DAS-2 research

- Satin: wide-area divide-and-conquer
- Search algorithms
- Solving Awari

Satin: parallel divide-and-conquer

- Divide-and-conquer is
 inherently hierarchical
- More general than master/worker

Satin: Cilk-like primitives (spawn/sync) in Java

Satin

- Grid-aware load-balancing [PPoPP'01]
- Supports malleability (nodes joining/leaving) and fault-tolerance (nodes crashing) [IPDPS'05]
- Self-adaptive [PPoPP'07]
- Range of applications (SAT-solver, N-body simulation, raytracing, grammar learning,)
 [ACM TOPLAS 2010]
 - Ph.D theses: van Nieuwpoort (2003), Wrzesinska (2007)

Satin on wide-area DAS-2

vriie Universitei

Search algorithms

 Parallel search: partition search space

- Many applications have transpositions
 - Reach same position through different moves
- Transposition table:
 - Hash table storing positions that have been evaluated before
 - Shared among all processors

Distributed transposition tables

- Partitioned tables
 - 10,000s synchronous messages per second
 - Poor performance even on a cluster
 - Replicated tables
 - Broadcasting doesn't scale (many updates)

Transposition Driven Scheduling

Send job asynchronously to owner table entry

- . Can be overlapped with computation
- Random (=good) load balancing
- Delayed & combined into fewer large messages

→ Bulk transfers are far more efficient on most networks

Speedups for Rubik's cube

- Latency-insensitive algorithm works well even on a grid, despite huge amount of communication
 - [IEEE TPDS 2002]

Solving awari

- Solved by John Romein [IEEE Computer, Oct. 2003]
 - Computed on VU DAS-2 cluster, using similar ideas as TDS
- Determined score for <u>889,063,398,406</u>
 positions
- . Game is a draw

Andy Tanenbaum: ``You just ruined a perfectly fine 3500 year old game"

DAS-3 research

- Ibis [IEEE Computer 2010]
- StarPlane
- . Wide-area Awari
- Distributed Model Checking

i*ie* Universitei

StarPlane

- Multiple dedicated 10G light paths between sites
- . Idea: dynamically change wide-area topology

Wide-area Awari

- Based on retrograde analysis
 - Backwards analysis of search space (database)
- Partitions database, like transposition tables
 - Random distribution good load balance
- Repeatedly send results to parent nodes
 - Asynchronous, combined into bulk transfers
- Extremely communication intensive:
 - 1 Pbit of data in 51 hours (on 1 DAS-2 cluster)

Awari on DAS-3 grid

- . Implementation on single big cluster
 - . 144 cores
 - Myrinet (MPI)
- Naïve implementation on 3 small clusters
 - . 144 cores

ie Universite

• Myrinet + 10G light paths (OpenMPI)

Initial insights

- Single-cluster version has high performance, despite high communication rate
 - . Up to 28 Gb/s cumulative network throughput
- Naïve grid version has flow control problems
 - Faster CPUs overwhelm slower CPUs with work
 - Unrestricted job queue growth
 - → Add regular global synchronizations (barriers)

Optimizations

- Scalable barrier synchronization algorithm
 - Ring algorithm has too much latency on a grid

- Tree algorithm for barrier&termination detection
- Reduce host overhead
 - CPU overhead for MPI message handling/polling
- Optimize grain size per network (LAN vs. WAN)
 - Large messages (much combining) have lower host overhead but higher load-imbalance
- [CCGrid 2008]

Performance

- Optimizations improved grid performance by 50%
- . Grid version only 15% slower than 1 big cluster
 - Despite huge amount of communication (14.8 billion messages for 48-stone database)

From Games to Model Checking

- Distributed model checking has very similar communication pattern as Awari
 - Search huge state spaces, random work distribution, bulk
 asynchronous transfers
- Can efficiently run DiVinE model checker on widearea DAS-3, use up to 1 TB memory [IPDPS'09]

Required wide-area bandwidth

DAS-4 research examples

- Distributed reasoning
 - . (Jacopo Urbani)
- Multimedia analysis on GPUs
 - . (Ben van Werkhoven)

WebPIE

- The Semantic Web is a set of technologies to enrich the current Web
- Machines can reason over SW data to find best results to the queries
- WebPIE is a MapReduce reasoner with linear scalability
- It significantly outperforms other approaches by one/two orders of magnitude

Performance previous state-of-the-art

Performance WebPIE

Parallel-Horus: User Transparent Parallel Multimedia Computing on GPU Clusters

Naive 2D Convolution Kernel on DAS-4 GPU

A naive 2D Convolution kernel on a GTX 480

Our best performing 2D Convolution Kernel

2D Convolution kernel with Adaptive Tiling (16x32) on a GTX 480

Conclusions

- Having a dedicated distributed infrastructure for CS enables experiments that are impossible on production systems
 - Need long-term organization (like ASCI)
- DAS has had a huge impact on Dutch CS, at moderate cost
 - Collaboration around common infrastructure led to large joint projects (VL-e, SURFnet) & grants

Acknowledgements

VU Group: Niels Drost **Ceriel Jacobs Roelof Kemp** Timo van Kessel Thilo Kielmann Jason Maassen Rob van Nieuwpoort Nick Palmer Kees van Reeuwijk Frank Seinstra Jacopo Urbani **Kees Verstoep** Ben van Werkhoven & many others

DAS Steering Group: Lex Wolters Dick Epema Cees de Laat Frank Seinstra John Romein Rob van Nieuwpoort

DAS management: Kees Verstoep

DAS grandfathers: Andy Tanenbaum Bob Hertzberger Henk Sips

<u>Funding</u>: NWO, NCF, SURFnet, VL-e, MultimediaN

