
Programming Scalable Systems with MPI

Clemens Grelck

University of Amsterdam

UvA / SURFsara
High Performance Computing and Big Data

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Gentle Introduction to MPI

Point-to-point Communication

Message Passing and Domain Decomposition

Overlapping Communication with Computation

Synchronous vs Asynchronous Communication

Conclusion

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Targeted Systems: Clusters and Supercomputers

Characteristics:

I Many (usually) identical machines (compute nodes)

I High-speed network (e.g. Infiniband)

I Loosely coupled

I Distributed memory architecture

Examples:

Tianhe-2
NUDT, China
TOP500 #1

Sequoia
LLNL, USA
TOP500 #3

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Programming model:

process

code

registers

address
space

process

code

registers

address
space

process

messages

messages

network

code

registers

address
space

code

registers

address
space

process

Distributed memory architectures !

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Core idea:

I Code for individual processes written in sequential language
I Ability to send and receive messages provided via library
I Know who you are and who else is out there

Applicability:

I Designed for network-connected sets of machines
I Applicable to shared memory architectures as well
I Applicable to uniprocessor with multitasking operating system

Characterisation:

I Very low-level and machine-oriented
I Deadlocks: wait for message that never comes
I Unstructured (spaghetti) communication:

Send/receive considered the goto of parallel programming

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Core idea:

I Code for individual processes written in sequential language
I Ability to send and receive messages provided via library
I Know who you are and who else is out there

Applicability:

I Designed for network-connected sets of machines
I Applicable to shared memory architectures as well
I Applicable to uniprocessor with multitasking operating system

Characterisation:

I Very low-level and machine-oriented
I Deadlocks: wait for message that never comes
I Unstructured (spaghetti) communication:

Send/receive considered the goto of parallel programming

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Core idea:

I Code for individual processes written in sequential language
I Ability to send and receive messages provided via library
I Know who you are and who else is out there

Applicability:

I Designed for network-connected sets of machines
I Applicable to shared memory architectures as well
I Applicable to uniprocessor with multitasking operating system

Characterisation:

I Very low-level and machine-oriented
I Deadlocks: wait for message that never comes
I Unstructured (spaghetti) communication:

Send/receive considered the goto of parallel programming

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Gentle Introduction to MPI

Point-to-point Communication

Message Passing and Domain Decomposition

Overlapping Communication with Computation

Synchronous vs Asynchronous Communication

Conclusion

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

What is MPI ?

MPI is NOT a library !

MPI is a specification !

I Names of data types

I Names of procedures (MPI-1: 128, MPI-2: 287)

I Parameters of procedures

I Behaviour of procedures

Bindings for different languages:

I Fortran

I C

I C++ (MPI-2 only)

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

What is MPI ?

MPI is NOT a library !

MPI is a specification !

I Names of data types

I Names of procedures (MPI-1: 128, MPI-2: 287)

I Parameters of procedures

I Behaviour of procedures

Bindings for different languages:

I Fortran

I C

I C++ (MPI-2 only)

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

What is MPI ?

MPI is NOT a library !

MPI is a specification !

I Names of data types

I Names of procedures (MPI-1: 128, MPI-2: 287)

I Parameters of procedures

I Behaviour of procedures

Bindings for different languages:

I Fortran

I C

I C++ (MPI-2 only)

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Organization Principle of MPI Programs

SPMD — Single Program, Multiple Data:

task n

a.out a.out

task 3

a.outa.out

task 1 task 2

Characteristics:

I Each task executes the same binary program.

I Tasks may identify total number of tasks.

I Tasks may identify themselves.

I All tasks are (implicitly) created at program startup.

I Specific program launcher: mpirun

I All tasks are (implicitly) shut down at program termination.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

My First MPI Program: Distributed Hello World
#include <stdio.h>

#include "mpi.h"

int main(int argc , char *argv [])

{

int rc, num_tasks , my_rank;

rc = MPI_Init(&argc , &argv); // Init runtime

if (rc != MPI_SUCCESS) { // Success check

fprintf(stderr , "Unable to set up MPI ");

MPI_Abort(MPI_COMM_WORLD , rc); // Abort runtime

}

MPI_Comm_size(MPI_COMM_WORLD , &num_tasks); // Get num tasks

MPI_Comm_rank(MPI_COMM_WORLD , &my_rank); // Get task id

printf("Hello World says %s!\n", argv [0]);

printf("I’m task number %d of a total of %d tasks .\n",

my_rank , num_tasks);

MPI_Finalize (); // Shutdown runtime

return 0;

}

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Compiling First MPI Program

HowTo:

mpicc -o hello_world hello_world.c // for C

mpicxx -o hello_world hello_world.c // for C++ programs

mpif77 -o hello_world hello_world.c // for Fortran77 programs

mpif90 -o hello_world hello_world.c // for Fortran90 /95 programs

mpiXYZ are compiler wrappers:

I set paths properly

I link with correct libraries

I ...

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Running First MPI Program

Example output:

grelck@das4:> mpirun -n 8 hello_world

Hello World says hello_world!

Hello World says hello_world!

Hello World says hello_world!

Hello World says hello_world!

I’m task number 4 of a total of 8 tasks.

Hello World says hello_world!

I’m task number 5 of a total of 8 tasks.

I’m task number 6 of a total of 8 tasks.

Hello World says hello_world!

I’m task number 7 of a total of 8 tasks.

Hello World says hello_world!

I’m task number 0 of a total of 8 tasks.

I’m task number 3 of a total of 8 tasks.

Hello World says hello_world!

I’m task number 1 of a total of 8 tasks.

I’m task number 2 of a total of 8 tasks.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Essential MPI Routines: MPI Init

Signature:

int MPI_Init(int *argc , char *** argv)

Characteristics:

I Initializes MPI runtime system.

I Must be called by each process.

I Must be called before any other MPI routine.

I Must be called exactly once.

I Distributes command line information.

I Returns error condition.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Essential MPI Routines: MPI Finalize

Signature:

int MPI_Finalize(void)

Characteristics:

I Finalizes MPI runtime system.

I Must be called by each process.

I Must be called after any other MPI routine.

I Must be called exactly once.

I Returns error condition.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Essential MPI Routines: MPI Abort

Signature:

int MPI_Abort(MPI_Comm communicator , int error_code)

Characteristics:

I Aborts program execution.

I Shuts down ALL MPI processes.

I More precisely:
shuts down all processes referred to by communicator.

I Replaces MPI Finalize.

I Must be used instead of exit or abort.

I MPI process system returns error code to surrounding
context.

I Standard communicator: MPI COMM WORLD

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Essential MPI Routines: MPI Comm size

Signature:

int MPI_Comm_size(MPI_Comm comm , \\ IN : communicator

int *size \\ OUT : number of tasks

)

Characteristics:

I Queries for number of MPI processes.

I More precisely: size of “communicator”.

I Result is “returned” in parameter “size”.

I Returns error condition.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Essential MPI Routines: MPI Comm rank

Signature:

int MPI_Comm_rank(MPI_Comm comm , \\ IN : communicator

int *rank \\ OUT : task id

)

Characteristics:

I Queries for task ID, called “rank”.

I More precisely: task ID with respect to “communicator”.

I Result is “returned” in parameter “rank”.

I Returns error condition.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

MPI Routines

Common design characteristics:

I All routine names start with “MPI ”.

I Name components are separated with underscores.

I First component starts with upper case letter.
I All routines return integer error code.

I MPI SUCCESS
I MPI ERR XXX

I Routines have 3 types of parameters:
I IN: regular parameter, read by routine.
I OUT: return parameter, written by routine.
I INOUT: reference parameter, read and written by routine.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Gentle Introduction to MPI

Point-to-point Communication

Message Passing and Domain Decomposition

Overlapping Communication with Computation

Synchronous vs Asynchronous Communication

Conclusion

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Scope of Communication

Point-to-Point Communication:

I ONE Sender

I ONE Receiver

I ONE Message

receivesend

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Introductory Example

Algorithmic idea:

I Task #0 sends some string to task #1.
I Task #1 waits for receiving string and prints it.

Program code:

char msg [20];

int myrank;

int tag = 99;

MPI_Status status;

MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

if (myrank == 0) {

strcpy(msg , "Hello world !");

MPI_Send(msg , strlen(msg)+1, MPI_CHAR , 1, tag , MPI_COMM_WORLD);

}

else if (myrank == 1) {

MPI_Recv(msg , 20, MPI_CHAR , 0, tag , MPI_COMM_WORLD , &status);

printf("%s\n", msg);

}

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

What Makes a Message ?

Message:

Message
Envelope

Data

Source

Destination

Tag

Communicator

Data

Message envelope:

I Source: sender task id

I Destination: receiver task id

I Tag: Number to distinguish different categories of messages

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

What Makes a Message ?

Message:

Message
Envelope

Data

Source

Destination

Tag

Communicator

Data

Message envelope:

I Source: sender task id

I Destination: receiver task id

I Tag: Number to distinguish different categories of messages

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Standard Blocking Communication: MPI Send

Signature:
int MPI_Send(

void *buffer , // IN : address of send buffer

int count , // IN : number of entries in buffer

MPI_Datatype datatype , // IN : datatype of entry

int destination // IN : rank of destination

int tag , // IN : message tag

MPI_Comm communicator // IN : communicator

)

Characteristics:

I Standard blocking send operation.
I Assembles message envelope.
I Sends message to destination.
I May return as soon as message is handed over to “system”.
I May wait for corresponding receive operation.
I Buffering behaviour is implementation-dependent.
I No synchronization with receiver (guaranteed).

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

MPI Data Types

MPI datatype C datatype

------------ ----------

MPI_CHAR char

MPI_SIGNED_CHAR char

MPI_UNSIGNED_CHAR unsigned char

MPI_SHORT short

MPI_UNSIGNED_SHORT unsigned short

MPI_INT int

MPI_UNSIGNED unsigned int

MPI_LONG long

MPI_UNSIGNED_LONG unsigned long

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Standard Blocking Communication: MPI Recv

Signature:

int MPI_Recv(

void *buffer , // OUT : address of receive buffer

int count , // IN : maximum number of entries

MPI_Datatype datatype , // IN : datatype of entry

int source // IN : rank of source

int tag , // IN : message tag

MPI_Comm communicator , // IN : communicator

MPI_Status *status // OUT : return status

)

Characteristics:

I Standard blocking receive operation.
I Receives message from source with tag.
I Disassembles message envelope.
I Stores message data in buffer.
I Returns not before message is received.
I Returns additional status data structure.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Intricacies of MPI Recv

Receiving messages from any source ?

I Use wildcard source specification MPI ANY SOURCE

Receiving messages with any tag ?

I Use wildcard tag specification MPI ANY TAG

Message buffer larger than message ?

I Don’t worry, excess buffer fields remain untouched.

Message buffer smaller than message ?

I Message is truncated, no buffer overflow.

I MPI Recv returns error code MPI ERR TRUNCATE.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Intricacies of MPI Recv

Receiving messages from any source ?

I Use wildcard source specification MPI ANY SOURCE

Receiving messages with any tag ?

I Use wildcard tag specification MPI ANY TAG

Message buffer larger than message ?

I Don’t worry, excess buffer fields remain untouched.

Message buffer smaller than message ?

I Message is truncated, no buffer overflow.

I MPI Recv returns error code MPI ERR TRUNCATE.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Intricacies of MPI Recv

Receiving messages from any source ?

I Use wildcard source specification MPI ANY SOURCE

Receiving messages with any tag ?

I Use wildcard tag specification MPI ANY TAG

Message buffer larger than message ?

I Don’t worry, excess buffer fields remain untouched.

Message buffer smaller than message ?

I Message is truncated, no buffer overflow.

I MPI Recv returns error code MPI ERR TRUNCATE.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Intricacies of MPI Recv

Receiving messages from any source ?

I Use wildcard source specification MPI ANY SOURCE

Receiving messages with any tag ?

I Use wildcard tag specification MPI ANY TAG

Message buffer larger than message ?

I Don’t worry, excess buffer fields remain untouched.

Message buffer smaller than message ?

I Message is truncated, no buffer overflow.

I MPI Recv returns error code MPI ERR TRUNCATE.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Status of Receive Operations

Structure containing (at least) 3 values:

I Message tag
I used in conjunction with MPI ANY TAG

I Message source
I used in conjunction with MPI ANY SOURCE

I Error code
I used in conjunction with multiple receives (see later)

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Status of Receive Operations

Additional information:

int MPI_Get_count(

MPI_STATUS *status , // IN : return status of receive

MPI_Datatype datatype , // IN : datatype of buffer entry

int *count // OUT : number of received entries

)

Not interested in status ?

I Use MPI STATUS IGNORE as status argument !!

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Status of Receive Operations

Additional information:

int MPI_Get_count(

MPI_STATUS *status , // IN : return status of receive

MPI_Datatype datatype , // IN : datatype of buffer entry

int *count // OUT : number of received entries

)

Not interested in status ?

I Use MPI STATUS IGNORE as status argument !!

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Type Matching

Correct message passing requires 3 type matches:

1. Sender: Variable type must match MPI type.

2. Transfer: MPI send type must match MPI receive type.

3. Receiver: MPI type must match variable type.

Strictly prohibited:

I char buf[100];

MPI_Send(buf, 10, MPI_BYTE, dest, tag, communicator);

I long buf[100];

MPI_Send(buf, 10, MPI_INT, dest, tag, communicator);

I MPI_Send(buf, 10, MPI_INT, 1, tag, communicator);

MPI_Recv(buf, 40, MPI_BYTE, 0, tag, communicator, status);

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Type Matching

Correct message passing requires 3 type matches:

1. Sender: Variable type must match MPI type.

2. Transfer: MPI send type must match MPI receive type.

3. Receiver: MPI type must match variable type.

Strictly prohibited:

I char buf[100];

MPI_Send(buf, 10, MPI_BYTE, dest, tag, communicator);

I long buf[100];

MPI_Send(buf, 10, MPI_INT, dest, tag, communicator);

I MPI_Send(buf, 10, MPI_INT, 1, tag, communicator);

MPI_Recv(buf, 40, MPI_BYTE, 0, tag, communicator, status);

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Type Matching

Correct message passing requires 3 type matches:

1. Sender: Variable type must match MPI type.

2. Transfer: MPI send type must match MPI receive type.

3. Receiver: MPI type must match variable type.

Strictly prohibited:

I char buf[100];

MPI_Send(buf, 10, MPI_BYTE, dest, tag, communicator);

I long buf[100];

MPI_Send(buf, 10, MPI_INT, dest, tag, communicator);

I MPI_Send(buf, 10, MPI_INT, 1, tag, communicator);

MPI_Recv(buf, 40, MPI_BYTE, 0, tag, communicator, status);

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Type Matching

Correct message passing requires 3 type matches:

1. Sender: Variable type must match MPI type.

2. Transfer: MPI send type must match MPI receive type.

3. Receiver: MPI type must match variable type.

Strictly prohibited:

I char buf[100];

MPI_Send(buf, 10, MPI_BYTE, dest, tag, communicator);

I long buf[100];

MPI_Send(buf, 10, MPI_INT, dest, tag, communicator);

I MPI_Send(buf, 10, MPI_INT, 1, tag, communicator);

MPI_Recv(buf, 40, MPI_BYTE, 0, tag, communicator, status);

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Representation Conversion

Why don’t we simply transmit byte vectors ?

I MPI may be used on heterogeneous systems.

I Different architectures use different encodings for same data
types !

I Examples:
I big endian vs. little endian
I char as byte vs. char as integer
I different floating point representations

MPI implicitly cares for data conversion where necessary !

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Message Ordering

The order of messages is preserved:

I for ONE source
I and ONE destination
I using ONE communicator

Is message ordering transitive ? NO !!

P 2

recv

send

recv

recv

P 0

P 1

send

send

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Gentle Introduction to MPI

Point-to-point Communication

Message Passing and Domain Decomposition

Overlapping Communication with Computation

Synchronous vs Asynchronous Communication

Conclusion

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Example: 1-D Wave Equation

A
m

p
li

tu
d

e
 A

 a
t

ti
m

e
 t

1

−1

i

I Update amplitude in discrete time steps.

I 1-D wave equation:

Ai ,t+1 = 2×Ai ,t−Ai ,t−1 + c×(Ai−1,t − (2×Ai ,t−Ai+1,t))

I Amplitude At+1,i depends on
I Amplitude at neighbouring points
I Amplitude at previous time steps

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation: Serial Pseudo Code

double cur[npoints];

double new[npoints];

double old[npoints];

initialize(cur);

initialize(old);

for t=1 to nsteps {

for i=1 to npoints -2 {

new[i] = 2.0 * cur[i] - old[i]

+ c * (cur[i-1] - (2 * cur[i] - cur[i+1]));

}

old = cur;

cur = new;

}

write cur to file;

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

How can we parallelise this with MPI ?

A
m

p
li

tu
d

e
 A

 a
t

ti
m

e
 t

1

−1

i

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation: Parallelization Approach

Explicit domain decomposition:

1

−1

i

A
m

p
li

tu
d

e
 A

 a
t

ti
m

e
 t

I Partition signal arrays in equally sized subarrays.
I Only store relevant fraction of signal on each node.
I Explicitly map global indices into local indices.
I Compute new signal generation locally.

But what do we do at the boundaries ?

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation: Parallelization Approach

Explicit domain decomposition:

1

−1

i

A
m

p
li

tu
d

e
 A

 a
t

ti
m

e
 t

I Partition signal arrays in equally sized subarrays.
I Only store relevant fraction of signal on each node.
I Explicitly map global indices into local indices.
I Compute new signal generation locally.

But what do we do at the boundaries ?
Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation: Parallelization Approach

Explicit domain decomposition with halo cells:

1

−1

i

A
m

p
li

tu
d

e
 A

 a
t

ti
m

e
 t

I Add two locations for halo cells.
I Iterate in lock step:

I Update halo cells.
I Compute new signal.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation: Parallel Pseudo Code (1)
local_size = npoints / num_tasks ();

double cur[local_size + 2];

double new[local_size + 2];

double old[local_size + 2];

left_neighbour = task_id () - 1 // Special treatment of left

right_neighbour = task_id () + 1 // and right node left out.

if (task_id () == 0) { // I’m the MASTER.

for t = 1 to num_tasks ()-1 {

initialize(cur [1: local_size]) ;

send(t, cur[1: local_size]) ;

initialize(old [1: local_size]) ;

send(t, old[1: local_size]) ;

}

initialize(cur [1: local_size]) ;

initialize(old [1: local_size]) ;

}

else { // I’m a WORKER.

cur [1: local_size] = receive(0);

old [1: local_size] = receive(0);

}

.......

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation: Parallel Pseudo Code (2)

.......

for t=1 to nsteps {

send(left_neighbour , cur [1]) ;

cur[local_size + 1] = receive(right_neighbour);

send(right_neighbour , cur[local_size]);

cur [0] = receive(left_neighbour);

for i=1 to local_size {

new[i] = 2.0 * cur[i] - old[i]

+ c * (cur[i-1] - (2 * cur[i] - cur[i+1]));

}

old = cur;

cur = new;

}

.......

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation: Parallel Pseudo Code (3)

.......

if (task_id () > 0) { /* I’m a WORKER. */

send(0, cur[1: local_size]);

}

else { /* I’m the MASTER. */

write(file , cur[1: local_size]);

for i=1 to num_tasks () - 1 {

cur [1: local_size] = receive(i) ;

write(file , cur[1: local_size]);

}

}

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Gentle Introduction to MPI

Point-to-point Communication

Message Passing and Domain Decomposition

Overlapping Communication with Computation

Synchronous vs Asynchronous Communication

Conclusion

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Overlapping Communication with Computation

Observation:

I Communication is expensive overhead

I Communication uses network adaptor, dma controller, ...

I Computation uses cores, vector units, float units, ...

Idea:

I Let communication happen in the background

I Run communication in parallel with computation

Implementation:

I Initiate message sending as soon as data is available

I Provide receive buffer as soon as old data no longer needed

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Overlapping Communication with Computation

Observation:

I Communication is expensive overhead

I Communication uses network adaptor, dma controller, ...

I Computation uses cores, vector units, float units, ...

Idea:

I Let communication happen in the background

I Run communication in parallel with computation

Implementation:

I Initiate message sending as soon as data is available

I Provide receive buffer as soon as old data no longer needed

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Overlapping Communication with Computation

Observation:

I Communication is expensive overhead

I Communication uses network adaptor, dma controller, ...

I Computation uses cores, vector units, float units, ...

Idea:

I Let communication happen in the background

I Run communication in parallel with computation

Implementation:

I Initiate message sending as soon as data is available

I Provide receive buffer as soon as old data no longer needed

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation Reloaded (1)

Overlapping Communication and Computation:
.......

for t=1 to nsteps {

send(left_neighbour , cur [1]) ;

send(right_neighbour , cur[local_size]) ;

for i=2 to local_size - 1 {

new[i] = ... ;

}

cur[local_size + 1] = receive(right_neighbour) ;

new[local_size] = ...;

cur [0] = receive(left_neighbour) ;

new [1] = ...;

old = cur ;

cur = new ;

}

.......

Can we do even better ? Homework !!

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation Reloaded (1)

Overlapping Communication and Computation:
.......

for t=1 to nsteps {

send(left_neighbour , cur [1]) ;

send(right_neighbour , cur[local_size]) ;

for i=2 to local_size - 1 {

new[i] = ... ;

}

cur[local_size + 1] = receive(right_neighbour) ;

new[local_size] = ...;

cur [0] = receive(left_neighbour) ;

new [1] = ...;

old = cur ;

cur = new ;

}

.......

Can we do even better ? Homework !!

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Gentle Introduction to MPI

Point-to-point Communication

Message Passing and Domain Decomposition

Overlapping Communication with Computation

Synchronous vs Asynchronous Communication

Conclusion

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Synchronous vs Asynchronous Communication (1)

Blocking Send — Blocking Receive:

send receive

send

send receive

receive

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Synchronous vs Asynchronous Communication (2)

Non-Blocking Send — Blocking Receive:

receive

send

send receive

receive

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Synchronous vs Asynchronous Communication (3)

Non-Blocking Send — Non-Blocking Receive:

receive

send

receive

receive

send

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Non-Blocking Communication

Idea:

I Split communication operation into initiation and completion.

MPI Send(...)

 handle = MPI Isend(...)

· · ·
MPI Wait(handle, ...)

MPI Recv(..)

 handle = MPI Irecv(...)

· · ·
MPI Wait(handle, ...)

Rationale:

I Overlap communication with computation.

I Initiate communication as early as possible.

I Complete communication as late as possible.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Non-Blocking Communication: MPI Isend

Signature:
int MPI_Isend(

void *buffer , // IN : address of send buffer

int count , // IN : number of entries in buffer

MPI_Datatype datatype , // IN : datatype of entry

int destination // IN : rank of destination

int tag , // IN : message tag

MPI_Comm communicator , // IN : communicator

MPI_Request *request // OUT : request handle

)

Characteristics:

I Non-blocking send operation.
I Assembles message envelope.
I Initiates sending of message.
I Returns “immediately”.
I Does not wait for completion of sending.
I Returns request handle to identify communication operation

for later inspection.
Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Non-Blocking Communication: MPI Irecv

Signature:
int MPI_Irecv(

void *buffer , // OUT : address of receive buffer

int count , // IN : maximum number of entries

MPI_Datatype datatype , // IN : datatype of entry

int source // IN : rank of source

int tag , // IN : message tag

MPI_Comm communicator , // IN : communicator

MPI_Request *request // OUT : request handle

)

Characteristics:

I Non-blocking receive operation.
I Provides buffer for receiving message.
I Initiates receive operation.
I Does not wait for message.
I Returns “immediately”.
I Returns request handle to identify communication operation

for later inspection.
Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Non-Blocking Communication: MPI Wait

Signature:

int MPI_Wait(MPI_Request *request , \\ INOUT : request handle

MPI_Status *status \\ OUT : return status

)

Characteristics:

I Finishes non-blocking send or receive operation.

I Returns not before communication is completed.

I Sets request handle to MPI REQUEST NULL.

I Returns additional status data structure.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Non-Blocking Communication: MPI Test

Signature:

int

MPI_Test(

MPI_Request *request , \\ INOUT : request handle

int *flag \\ OUT : true iff operation completed

MPI_Status *status \\ OUT : return status

)

Characteristics:

I Checks status of non-blocking send or receive operation.

I Returns immediately.

I Flag indicates completion status of operation.

I If operation is completed, sets request handle to
MPI REQUEST NULL.

I If operation is completed, returns additional status data
structure.

I If operation is still pending, MPI Test does nothing.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

1-D Wave Equation Reloaded Once More

How could the wave equation benefit ?

Homework !!

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Gentle Introduction to MPI

Point-to-point Communication

Message Passing and Domain Decomposition

Overlapping Communication with Computation

Synchronous vs Asynchronous Communication

Conclusion

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

MPI and Shared Memory Multi-Core Nodes

History:

I MPI invented in uni-core era

I Networked large-scale SMPs uncommon
(poor price/performance ratio)

Options today:

I Run multiple MPI processes per node

I Implementation trick: communication via shared memory

I Combine MPI with OpenMP / PThreads

I Future versions of MPI will have dedicated SMP support

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

Summary and Conclusion

Global view programming with Pthreads or OpenMP:

I Multiple concurrent execution threads within process

I Concurrent access to shared data

I Race conditions

I Deadlocks

Local view programming with MPI:

I Multiple concurrent processes

I Large data structures require explicit splitting

I Array index mapping between global and local view needed

I Data marshalling / unmarshalling needed

I Deadlocks

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

The End: Questions ?

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI

	Message Passing as a Programming Paradigm
	Gentle Introduction to MPI
	Point-to-point Communication
	Message Passing and Domain Decomposition
	Overlapping Communication with Computation
	Synchronous vs Asynchronous Communication
	Conclusion

