
Programming Scalable Systems with MPI

Clemens Grelck

University of Amsterdam

UvA / SURFsara
High Performance Computing and Big Data

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI



Programming Scalable Systems with MPI

Message Passing as a Programming Paradigm

Gentle Introduction to MPI

Point-to-point Communication

Message Passing and Domain Decomposition

Overlapping Communication with Computation

Synchronous vs Asynchronous Communication

Conclusion

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI



Targeted Systems: Clusters and Supercomputers

Characteristics:

I Many (usually) identical machines (compute nodes)

I High-speed network (e.g. Infiniband)

I Loosely coupled

I Distributed memory architecture

Examples:

Tianhe-2
NUDT, China
TOP500 #1

Sequoia
LLNL, USA
TOP500 #3
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Message Passing as a Programming Paradigm

Programming model:

process

code

registers

address
space

process

code

registers

address
space

process

messages

messages

network

code

registers

address
space

code

registers

address
space

process

Distributed memory architectures !
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Message Passing as a Programming Paradigm

Core idea:

I Code for individual processes written in sequential language
I Ability to send and receive messages provided via library
I Know who you are and who else is out there

Applicability:

I Designed for network-connected sets of machines
I Applicable to shared memory architectures as well
I Applicable to uniprocessor with multitasking operating system

Characterisation:

I Very low-level and machine-oriented
I Deadlocks: wait for message that never comes
I Unstructured (spaghetti) communication:

Send/receive considered the goto of parallel programming
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What is MPI ?

MPI is NOT a library !

MPI is a specification !

I Names of data types

I Names of procedures (MPI-1: 128, MPI-2: 287)

I Parameters of procedures

I Behaviour of procedures

Bindings for different languages:

I Fortran

I C

I C++ (MPI-2 only)
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Organization Principle of MPI Programs

SPMD — Single Program, Multiple Data:

task n

a.out a.out

task 3

a.outa.out

task 1 task 2

Characteristics:

I Each task executes the same binary program.

I Tasks may identify total number of tasks.

I Tasks may identify themselves.

I All tasks are (implicitly) created at program startup.

I Specific program launcher: mpirun

I All tasks are (implicitly) shut down at program termination.
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My First MPI Program: Distributed Hello World
#include <stdio.h>

#include "mpi.h"

int main( int argc , char *argv [])

{

int rc, num_tasks , my_rank;

rc = MPI_Init( &argc , &argv); // Init runtime

if (rc != MPI_SUCCESS) { // Success check

fprintf( stderr , "Unable to set up MPI ");

MPI_Abort( MPI_COMM_WORLD , rc); // Abort runtime

}

MPI_Comm_size( MPI_COMM_WORLD , &num_tasks ); // Get num tasks

MPI_Comm_rank( MPI_COMM_WORLD , &my_rank ); // Get task id

printf( "Hello World says %s!\n", argv [0]);

printf( "I’m task number %d of a total of %d tasks .\n",

my_rank , num_tasks );

MPI_Finalize (); // Shutdown runtime

return 0;

}
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Compiling First MPI Program

HowTo:

mpicc -o hello_world hello_world.c // for C

mpicxx -o hello_world hello_world.c // for C++ programs

mpif77 -o hello_world hello_world.c // for Fortran77 programs

mpif90 -o hello_world hello_world.c // for Fortran90 /95 programs

mpiXYZ are compiler wrappers:

I set paths properly

I link with correct libraries

I ...
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Running First MPI Program

Example output:

grelck@das4:> mpirun -n 8 hello_world

Hello World says hello_world!

Hello World says hello_world!

Hello World says hello_world!

Hello World says hello_world!

I’m task number 4 of a total of 8 tasks.

Hello World says hello_world!

I’m task number 5 of a total of 8 tasks.

I’m task number 6 of a total of 8 tasks.

Hello World says hello_world!

I’m task number 7 of a total of 8 tasks.

Hello World says hello_world!

I’m task number 0 of a total of 8 tasks.

I’m task number 3 of a total of 8 tasks.

Hello World says hello_world!

I’m task number 1 of a total of 8 tasks.

I’m task number 2 of a total of 8 tasks.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI



Essential MPI Routines: MPI Init

Signature:

int MPI_Init( int *argc , char *** argv)

Characteristics:

I Initializes MPI runtime system.

I Must be called by each process.

I Must be called before any other MPI routine.

I Must be called exactly once.

I Distributes command line information.

I Returns error condition.

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI



Essential MPI Routines: MPI Finalize

Signature:

int MPI_Finalize( void)

Characteristics:

I Finalizes MPI runtime system.

I Must be called by each process.

I Must be called after any other MPI routine.

I Must be called exactly once.

I Returns error condition.
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Essential MPI Routines: MPI Abort

Signature:

int MPI_Abort( MPI_Comm communicator , int error_code)

Characteristics:

I Aborts program execution.

I Shuts down ALL MPI processes.

I More precisely:
shuts down all processes referred to by communicator.

I Replaces MPI Finalize.

I Must be used instead of exit or abort.

I MPI process system returns error code to surrounding
context.

I Standard communicator: MPI COMM WORLD
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Essential MPI Routines: MPI Comm size

Signature:

int MPI_Comm_size( MPI_Comm comm , \\ IN : communicator

int *size \\ OUT : number of tasks

)

Characteristics:

I Queries for number of MPI processes.

I More precisely: size of “communicator”.

I Result is “returned” in parameter “size”.

I Returns error condition.
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Essential MPI Routines: MPI Comm rank

Signature:

int MPI_Comm_rank( MPI_Comm comm , \\ IN : communicator

int *rank \\ OUT : task id

)

Characteristics:

I Queries for task ID, called “rank”.

I More precisely: task ID with respect to “communicator”.

I Result is “returned” in parameter “rank”.

I Returns error condition.
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MPI Routines

Common design characteristics:

I All routine names start with “MPI ”.

I Name components are separated with underscores.

I First component starts with upper case letter.
I All routines return integer error code.

I MPI SUCCESS
I MPI ERR XXX

I Routines have 3 types of parameters:
I IN: regular parameter, read by routine.
I OUT: return parameter, written by routine.
I INOUT: reference parameter, read and written by routine.
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Scope of Communication

Point-to-Point Communication:

I ONE Sender

I ONE Receiver

I ONE Message

receivesend
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Introductory Example

Algorithmic idea:

I Task #0 sends some string to task #1.
I Task #1 waits for receiving string and prints it.

Program code:

char msg [20];

int myrank;

int tag = 99;

MPI_Status status;

MPI_Comm_rank( MPI_COMM_WORLD , &myrank );

if (myrank == 0) {

strcpy( msg , "Hello world !");

MPI_Send( msg , strlen(msg)+1, MPI_CHAR , 1, tag , MPI_COMM_WORLD );

}

else if (myrank == 1) {

MPI_Recv( msg , 20, MPI_CHAR , 0, tag , MPI_COMM_WORLD , &status );

printf( "%s\n", msg);

}
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What Makes a Message ?

Message:

Message
Envelope

Data

Source

Destination

Tag

Communicator

Data

Message envelope:

I Source: sender task id

I Destination: receiver task id

I Tag: Number to distinguish different categories of messages
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Standard Blocking Communication: MPI Send

Signature:
int MPI_Send(

void *buffer , // IN : address of send buffer

int count , // IN : number of entries in buffer

MPI_Datatype datatype , // IN : datatype of entry

int destination // IN : rank of destination

int tag , // IN : message tag

MPI_Comm communicator // IN : communicator

)

Characteristics:

I Standard blocking send operation.
I Assembles message envelope.
I Sends message to destination.
I May return as soon as message is handed over to “system”.
I May wait for corresponding receive operation.
I Buffering behaviour is implementation-dependent.
I No synchronization with receiver (guaranteed).
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MPI Data Types

MPI datatype C datatype

------------ ----------

MPI_CHAR char

MPI_SIGNED_CHAR char

MPI_UNSIGNED_CHAR unsigned char

MPI_SHORT short

MPI_UNSIGNED_SHORT unsigned short

MPI_INT int

MPI_UNSIGNED unsigned int

MPI_LONG long

MPI_UNSIGNED_LONG unsigned long

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED
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Standard Blocking Communication: MPI Recv

Signature:

int MPI_Recv(

void *buffer , // OUT : address of receive buffer

int count , // IN : maximum number of entries

MPI_Datatype datatype , // IN : datatype of entry

int source // IN : rank of source

int tag , // IN : message tag

MPI_Comm communicator , // IN : communicator

MPI_Status *status // OUT : return status

)

Characteristics:

I Standard blocking receive operation.
I Receives message from source with tag.
I Disassembles message envelope.
I Stores message data in buffer.
I Returns not before message is received.
I Returns additional status data structure.
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Intricacies of MPI Recv

Receiving messages from any source ?

I Use wildcard source specification MPI ANY SOURCE

Receiving messages with any tag ?

I Use wildcard tag specification MPI ANY TAG

Message buffer larger than message ?

I Don’t worry, excess buffer fields remain untouched.

Message buffer smaller than message ?

I Message is truncated, no buffer overflow.

I MPI Recv returns error code MPI ERR TRUNCATE.
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Status of Receive Operations

Structure containing (at least) 3 values:

I Message tag
I used in conjunction with MPI ANY TAG

I Message source
I used in conjunction with MPI ANY SOURCE

I Error code
I used in conjunction with multiple receives (see later)
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Status of Receive Operations

Additional information:

int MPI_Get_count(

MPI_STATUS *status , // IN : return status of receive

MPI_Datatype datatype , // IN : datatype of buffer entry

int *count // OUT : number of received entries

)

Not interested in status ?

I Use MPI STATUS IGNORE as status argument !!

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI



Status of Receive Operations

Additional information:

int MPI_Get_count(

MPI_STATUS *status , // IN : return status of receive

MPI_Datatype datatype , // IN : datatype of buffer entry

int *count // OUT : number of received entries

)

Not interested in status ?

I Use MPI STATUS IGNORE as status argument !!

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI



Type Matching

Correct message passing requires 3 type matches:

1. Sender: Variable type must match MPI type.

2. Transfer: MPI send type must match MPI receive type.

3. Receiver: MPI type must match variable type.

Strictly prohibited:

I char buf[100];

MPI_Send( buf, 10, MPI_BYTE, dest, tag, communicator);

I long buf[100];

MPI_Send( buf, 10, MPI_INT, dest, tag, communicator);

I MPI_Send( buf, 10, MPI_INT, 1, tag, communicator);

MPI_Recv( buf, 40, MPI_BYTE, 0, tag, communicator, status);
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Representation Conversion

Why don’t we simply transmit byte vectors ?

I MPI may be used on heterogeneous systems.

I Different architectures use different encodings for same data
types !

I Examples:
I big endian vs. little endian
I char as byte vs. char as integer
I different floating point representations

MPI implicitly cares for data conversion where necessary !
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Message Ordering

The order of messages is preserved:

I for ONE source
I and ONE destination
I using ONE communicator

Is message ordering transitive ? NO !!

P 2

recv

send

recv

recv

P 0

P 1

send

send
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Example: 1-D Wave Equation
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I Update amplitude in discrete time steps.

I 1-D wave equation:

Ai ,t+1 = 2×Ai ,t−Ai ,t−1 + c×(Ai−1,t − (2×Ai ,t−Ai+1,t))

I Amplitude At+1,i depends on
I Amplitude at neighbouring points
I Amplitude at previous time steps
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1-D Wave Equation: Serial Pseudo Code

double cur[npoints ];

double new[npoints ];

double old[npoints ];

initialize( cur);

initialize( old);

for t=1 to nsteps {

for i=1 to npoints -2 {

new[i] = 2.0 * cur[i] - old[i]

+ c * (cur[i-1] - (2 * cur[i] - cur[i+1]));

}

old = cur;

cur = new;

}

write cur to file;
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How can we parallelise this with MPI ?
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1-D Wave Equation: Parallelization Approach

Explicit domain decomposition:

1

−1

i

A
m

p
li

tu
d

e
 A

 a
t 

ti
m

e
 t

I Partition signal arrays in equally sized subarrays.
I Only store relevant fraction of signal on each node.
I Explicitly map global indices into local indices.
I Compute new signal generation locally.

But what do we do at the boundaries ?
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1-D Wave Equation: Parallelization Approach

Explicit domain decomposition with halo cells:
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I Add two locations for halo cells.
I Iterate in lock step:

I Update halo cells.
I Compute new signal.
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1-D Wave Equation: Parallel Pseudo Code (1)
local_size = npoints / num_tasks ();

double cur[local_size + 2];

double new[local_size + 2];

double old[local_size + 2];

left_neighbour = task_id () - 1 // Special treatment of left

right_neighbour = task_id () + 1 // and right node left out.

if (task_id () == 0) { // I’m the MASTER.

for t = 1 to num_tasks ()-1 {

initialize( cur [1: local_size ]) ;

send( t, cur[1: local_size ]) ;

initialize( old [1: local_size ]) ;

send( t, old[1: local_size ]) ;

}

initialize( cur [1: local_size ]) ;

initialize( old [1: local_size ]) ;

}

else { // I’m a WORKER.

cur [1: local_size] = receive( 0);

old [1: local_size] = receive( 0);

}

.......
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1-D Wave Equation: Parallel Pseudo Code (2)

.......

for t=1 to nsteps {

send( left_neighbour , cur [1]) ;

cur[local_size + 1] = receive( right_neighbour );

send( right_neighbour , cur[local_size ]);

cur [0] = receive( left_neighbour );

for i=1 to local_size {

new[i] = 2.0 * cur[i] - old[i]

+ c * (cur[i-1] - (2 * cur[i] - cur[i+1]));

}

old = cur;

cur = new;

}

.......
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1-D Wave Equation: Parallel Pseudo Code (3)

.......

if (task_id () > 0) { /* I’m a WORKER. */

send( 0, cur[1: local_size ]);

}

else { /* I’m the MASTER. */

write( file , cur[1: local_size ]);

for i=1 to num_tasks () - 1 {

cur [1: local_size] = receive( i) ;

write( file , cur[1: local_size ]);

}

}
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Overlapping Communication with Computation

Observation:

I Communication is expensive overhead

I Communication uses network adaptor, dma controller, ...

I Computation uses cores, vector units, float units, ...

Idea:

I Let communication happen in the background

I Run communication in parallel with computation

Implementation:

I Initiate message sending as soon as data is available

I Provide receive buffer as soon as old data no longer needed
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1-D Wave Equation Reloaded (1)

Overlapping Communication and Computation:
.......

for t=1 to nsteps {

send( left_neighbour , cur [1]) ;

send( right_neighbour , cur[local_size ]) ;

for i=2 to local_size - 1 {

new[i] = ... ;

}

cur[local_size + 1] = receive( right_neighbour) ;

new[local_size] = ...;

cur [0] = receive( left_neighbour) ;

new [1] = ...;

old = cur ;

cur = new ;

}

.......

Can we do even better ? Homework !!
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Synchronous vs Asynchronous Communication (1)

Blocking Send — Blocking Receive:

send receive

send

send receive

receive
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Synchronous vs Asynchronous Communication (2)

Non-Blocking Send — Blocking Receive:

receive

send

send receive

receive
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Synchronous vs Asynchronous Communication (3)

Non-Blocking Send — Non-Blocking Receive:

receive

send

receive

receive

send
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Non-Blocking Communication

Idea:

I Split communication operation into initiation and completion.

MPI Send(...)

 handle = MPI Isend(...)

· · ·
MPI Wait( handle, ...)

MPI Recv(..)

 handle = MPI Irecv(...)

· · ·
MPI Wait( handle, ...)

Rationale:

I Overlap communication with computation.

I Initiate communication as early as possible.

I Complete communication as late as possible.
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Non-Blocking Communication: MPI Isend

Signature:
int MPI_Isend(

void *buffer , // IN : address of send buffer

int count , // IN : number of entries in buffer

MPI_Datatype datatype , // IN : datatype of entry

int destination // IN : rank of destination

int tag , // IN : message tag

MPI_Comm communicator , // IN : communicator

MPI_Request *request // OUT : request handle

)

Characteristics:

I Non-blocking send operation.
I Assembles message envelope.
I Initiates sending of message.
I Returns “immediately”.
I Does not wait for completion of sending.
I Returns request handle to identify communication operation

for later inspection.
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Non-Blocking Communication: MPI Irecv

Signature:
int MPI_Irecv(

void *buffer , // OUT : address of receive buffer

int count , // IN : maximum number of entries

MPI_Datatype datatype , // IN : datatype of entry

int source // IN : rank of source

int tag , // IN : message tag

MPI_Comm communicator , // IN : communicator

MPI_Request *request // OUT : request handle

)

Characteristics:

I Non-blocking receive operation.
I Provides buffer for receiving message.
I Initiates receive operation.
I Does not wait for message.
I Returns “immediately”.
I Returns request handle to identify communication operation

for later inspection.
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Non-Blocking Communication: MPI Wait

Signature:

int MPI_Wait( MPI_Request *request , \\ INOUT : request handle

MPI_Status *status \\ OUT : return status

)

Characteristics:

I Finishes non-blocking send or receive operation.

I Returns not before communication is completed.

I Sets request handle to MPI REQUEST NULL.

I Returns additional status data structure.
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Non-Blocking Communication: MPI Test

Signature:

int

MPI_Test(

MPI_Request *request , \\ INOUT : request handle

int *flag \\ OUT : true iff operation completed

MPI_Status *status \\ OUT : return status

)

Characteristics:

I Checks status of non-blocking send or receive operation.

I Returns immediately.

I Flag indicates completion status of operation.

I If operation is completed, sets request handle to
MPI REQUEST NULL.

I If operation is completed, returns additional status data
structure.

I If operation is still pending, MPI Test does nothing.
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1-D Wave Equation Reloaded Once More

How could the wave equation benefit ?

Homework !!
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MPI and Shared Memory Multi-Core Nodes

History:

I MPI invented in uni-core era

I Networked large-scale SMPs uncommon
(poor price/performance ratio)

Options today:

I Run multiple MPI processes per node

I Implementation trick: communication via shared memory

I Combine MPI with OpenMP / PThreads

I Future versions of MPI will have dedicated SMP support

Clemens Grelck, University of Amsterdam Programming Scalable Systems with MPI



Summary and Conclusion

Global view programming with Pthreads or OpenMP:

I Multiple concurrent execution threads within process

I Concurrent access to shared data

I Race conditions

I Deadlocks

Local view programming with MPI:

I Multiple concurrent processes

I Large data structures require explicit splitting

I Array index mapping between global and local view needed

I Data marshalling / unmarshalling needed

I Deadlocks
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The End: Questions ?
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