
GPU PROGRAMMING
HPC courses
UvA, January 2016 Ana Lucia Varbanescu

Graphics in 1980
2

Graphics in 2000
3

Graphics in 2015
4

GPUs in movies
5

¨  From Ariel in Little Mermaid to Brave

So …
6

¨  GPUs are a steady market
¤ Gaming
¤ CAD-like activities

n Traditional or not …

¤ Visualisation
n Scientific or not …

¨  GPUs are increasingly used for other types of
applications
¤ Number crunching in science, finance, image processing
¤  (fast) Memory operations in big data processing

Another GPGPU history
7

Should we use GPUs for all applications?!

TODO List
8

1.  Briefly on performance
2.  GPGPUs
3.  CUDA
4.  If (time_left && vote)

 advanced CUDA
 else
 talk more about performance

Performance [1]

¨  Latency/delay
¤ The time for one operation (instruction) to finish, L
¤ To improve: minimize L

n  Lower is better

¨  Throughput
¤ The number of operations (instructions) per time unit, T
¤ To improve: maximize T

n Higher is better
n Thus, time per instruction decreases, on average

¨  Example: 1 man builds a house in 10 days.
¤ Latency improvement: …
¤ Throughput improvement: …

Performance [2]

¨  How do we get faster computers?
¤ Faster processors and memory

n  Increase clock frequency à latency boost

¤ Better memory techniques
n Use memory hierarchies à latency boost
n More memory closer to processor à latency boost

¤ Better processing techniques
n Use pipelining à throughput boost

¤ More processing units (cores, threads, …)
n Use parallelism/concurrency à throughput boost (only?)

¤ Accelerators
n Use specialized functional units à latency+throughput boost

Multi-cores = processors with multiple,
homogeneous cores
Many-cores = GPUs & alikes

Why multi- and many-cores? -1

Moore’s Law

¤ Gordon Moore (co-founder of Intel) predicted in 1965
that the transistor density of semiconductor chips would
double roughly every 18 months.

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year ... Certainly over the short term this rate can
be expected to continue, if not to increase....” Electronics Magazine 1965

12

Transistor Counts
13

Traditionally …
14

¨  More transistors = more functionality
¨  Improved technology = faster clocks = more speed

¨  Thus, every 18 months, we expect better and faster
processors.

¨  They were all sequential: they execute one
operation per clock cycle.

Revolution in Processors

¨  Chip density is
continuing to
increase about 2x
every 2 years

¨  BUT
¤ Clock speed is not
¤ Performance per

cycle is not
¤ Power is not

15

New ways to use transistors
16

¨  Parallelism on-chip: multi-core processors
¤  Transformed in many-core processors.

¨  “Multicore revolution”
¤  Every machine is a parallel machine.
¤ Accelerators start playing an important role.

n  Specialized
n  Energy efficient
n  Used on demand

¨  Can all applications use this parallelism?
¨  Can we program all these architectures efficiently?

¤  Performance? Productivity?

T12

NV30 NV40
G70

G80

GT200

3GHz Dual
Core P4

3GHz Core2
Duo

3GHz Xeon
Quad

GPU vs. CPU performance
17

1 GFLOPs = 10^9 ops / second

GPU vs. CPU performance
18

1 GB/s = 8 x10^9 bits / second

Why do we use many-cores?

¨  Performance
¤ Large scale parallelism

¨  Power Efficiency
¤ Use transistors more efficiently

¨  Price (GPUs)
¤ Game market is huge, bigger than Hollywood

n Gaming pays for our HPC needs!

¤ Mass production, economy of scale

¨  Prestige
¤ Reach ExaFLOP by 2019/2022 …

19

GPUs = the hardware
GPGPU = general purpose GPU

 (typically related to software/programming)

History 0

GPGPU History
21

¨  Current generation: NVIDIA Kepler
¤ 7.1B transistors
¤ More cores, more parallelism, more performance

1995 2000 2005 2010

RIVA 128
3M xtors

GeForce® 256
23M xtors

GeForce FX
125M xtors

GeForce 8800
681M xtors

GeForce 3
60M xtors

“Fermi”
3B xtors

GPGPU @ NVIDIA
22

GPUs @ AMD
23

GPUs @ ARM
24

(NVIDIA) GPUs
25

¨  Architecture
¤ Many (100s) slim cores
¤  Sets of (32 or 192) cores grouped into “multiprocessors”

with shared memory
n  SM(X) = stream multiprocessors

¤ Work as accelerators

¨  Memory
¤  Shared L2 cache
¤  Per-core caches + shared caches
¤ Off-chip global memory

¨  Programming
¤  Symmetric multi-threading
¤ Hardware scheduler

NVIDIA’s GPU Architecture
26

Parallelism
27

¨  Data parallelism (fine-grain)
¤  Restricted forms of task parallelism possible with newest

generation of NVIDIA GPUs
¨  SIMT (Single Instruction Multiple Thread) execution

¤ Many threads execute concurrently
n  Same instruction
n  Different data elements
n  HW automatically handles divergence

¤ Not same as SIMD because of multiple register sets,
addresses, and flow paths*

¨  Hardware multithreading
¤ HW resource allocation & thread scheduling

n  Excess of threads to hide latency
n  Context switching is (basically) free

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

Integration into host system
28

¨  Typically PCI Express 2.0
¨  Theoretical speed 8 GB/s

¤ Effective ≤ 6 GB/s
¤  In reality: 4 – 6 GB/s

¨  V3.0 recently available
¤ Double bandwidth
¤ Less protocol overhead

CPU vs. GPU
29

Control

ALU ALU

ALU ALU

Cache

CPU

GPU

Why so different?

¨  Different goals produce different designs!
¤ CPU must be good at everything
¤ GPUs focus on massive parallelism

n  Less flexible, more specialized

¨  CPU: minimize latency experienced by 1 thread
¤ big on-chip caches
¤  sophisticated control logic

¨  GPU: maximize throughput of all threads
¤ # threads in flight limited by resources => lots of

resources (registers, etc.)
¤ multithreading can hide latency => no big caches
¤  share control logic across many threads

30

CPU vs. GPU
31

¨  Movie
¨  The Mythbusters

¤ Jamie Hyneman & Adam Savage
¤ Discovery Channel

¨  Appearance at NVIDIA’s NVISION 2008

GPU Hardware: NVIDIA 32

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

Fermi
33

¨  Consumer: GTX 480, 580
¨  HPC: Tesla C2050

¤ More memory, ECC
¤  1.0 Tlop SP
¤  515 GFlop SP

¨  16 streaming
multiprocessors (SM)
¤ GTX 580: 16
¤ GTX 480: 15
¤ C2050: 14

¨  SMs are independent
¨  768 KB L2 cache

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

Fermi Streaming Multiprocessor (SM)
34

¨  32 cores per SM
(512 cores total)

¨  64KB configurable
L1 cache / shared memory

¨  32,768 32-bit registers

CUDA Core Architecture
35

¨  Decoupled floating point
and integer data paths

¨  Double precision throughput
is 50% of single precision

¨  Integer operations
optimized for extended
precision
¤  64 bit and wider data

element size

¨  Predication field for all
instructions

¨  Fused-multiply-add

Memory architecture (since Fermi)
36

¨  Configurable L1 cache per SM
¤ 16KB L1 cache / 48KB Shared
¤ 48KB L1 cache / 16KB Shared

¨  Shared L2 cache

Device memory

L2 cache

Host memory
PCI-e
bus

registers

L1 cache /
shared mem

registers

L1 cache /
shared mem ….

Kepler: the new SMX

¨  Consumer:
¤ GTX680, GTX780, GTX-Titan

¨  HPC
¤ Tesla K10..K40

¨  SMX features
¤ 192 CUDA cores

n 32 in Fermi
¤ 32 Special Function Units (SFU)

n 4 for Fermi
¤ 32 Load/Store units (LD/ST)

n 16 for Fermi

¨  3x Perf/Watt improvement

37

A comparison
38

Maxwell: the newest SMM

¨  Consumer:
¤ GTX 970, GTX 980, …

¨  HPC:
¤ ?

¨  SMM Features:
¤ 4 subblocks of 32 cores
¤ Dedicated L1/LM per 64 cores
¤ Dispatch/ecode/registers per

32 cores
¨  L2 cache: 2MB (~3x vs. Kepler)
¨  40 texture units
¨  Lower power consumption

39

Programming many-cores 40

Parallelism
41

¨  Threads
¤  Independent units of computation
¤ Expected to execute in parallel
¤ Write once, instantiate many times

¨  Concurrent execution
¤ Threads execute in the same time if there are sufficient

resources
¨  Assume a processor P with 10 cores and an

application A with:
¤ 10 threads: how long does A take?
¤ 20 threads: how long does A take?
¤ 33 threads: how long does A take?

Parallelism
42

¨  Synchronization = a thread’s execution must depend
on other threads
¤ Barrier = all threads wait to get to barrier before they

continue
¤ Shared variables = more threads RD/WR them

n  Locks = threads can use locks to protect the WR sections
¤ Atomic operation = operation completed by a single

thread at a time
¨  Thread scheduling = the order in which the threads

are executed on the machine
¤ User-based: programmer decides
¤ OS-based: OS decides (e.g., Linux, Windows)
¤ Hardware-based: hardware decides (e.g., GPUs)

Programming many-cores
43

= parallel programming:
¤ Choose/design algorithm
¤ Parallelize algorithm

n Expose enough layers of parallelism
n Minimize communication, synchronization, dependencies
n Overlap computation and communication

¤  Implement parallel algorithm
n Choose parallel programming model
n  (?) Choose many-core platform

¤ Tune/optimize application
n Understand performance bottlenecks & expectations
n Apply platform specific optimizations
n  (?) Apply application & data specific optimizations

Programming GPUs in CUDA 44

CUDA
45

¨  CUDA: Scalable parallel programming
¤ C/C++ extensions

n Other wrappers exist

¨  Straightforward mapping onto hardware
¤ Hierarchy of threads (to map to cores)

n Configurable at logical level

¤ Various memory spaces (to map to physical spaces)
n Usable via variable scopes

¨  Scale to 1000s of cores & 100,000s of threads
¤ GPU threads are lightweight
¤ GPUs need 1000s of threads for full utilization

CUDA Model of Parallelism

¨  CUDA virtualizes the physical hardware
¤ A block is a virtualized streaming multiprocessor

n  threads, shared memory

¤ A thread is a virtualized scalar processor
n  registers, PC, state

¨  Threads are scheduled onto physical hardware
without pre-emption
¤  threads/blocks launch & run to completion
¤ blocks must be independent

46

47

CUDA Model of Parallelism

Hierarchy of threads
48

Thread

Block

Grid

Using CUDA
49

¨  Two parts of the code:
¤ Device code = GPU code = kernel(s)

n Sequential program
n Write for 1 thread, execute for all

¤ Host code = CPU code
n  Instantiate grid + run the kernel
n Memory allocation, management, deallocation
n C/C++/Java/Python/…

¨  Host-device communication
¤ Explicit / implicit via PCI/e
¤ Minimum: data input/output

Processing flow
50

Image courtesy of Wikipedia

Kernel
runs here

All this happens from
the host code.

Grids, Thread Blocks and Threads

Grid
Thread Block 0, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Grid
Thread Block 0, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Kernels and grids
52

¨  Launch kernel (12 x 6 = 72 instances)
myKernel<<<numBlocks,threadsPerBlock>>>(…);

¤  dim3 threadsPerBlock(3,4);
n  threadsPerBlock.x = 3
n  threadsPerBlock.y = 4
n  Each thread:
(threadIdx.x, threadIdx.y)

¤  dim3 numBlocks(2,3);
n  blockDim.x = 2
n  blockDim.y=3
n  Each block :
(blockIdx.x,blockIdx.y)

Thread

Per-thread
Local Memory

SM

Per-SM
Shared
Memory

Kernel 0

Multiple Device Memory Scopes
53

¨  Per-thread private
memory
¤ Each thread has its own

local memory
¤ Stacks, other private

data, registers

¨  Per-SM shared memory
¤ Small memory close to the

processor, low latency
¨  Device memory

¤ GPU frame buffer
¤ Can be accessed by any

thread in any SM

Kernel 1
Per-device

Global
Memory

…

…

Memory Spaces in CUDA

Grid

Device Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

 Host

Constant Memory

54

Private
data

Shared data
(per block)

Global data

Texture Memory

Device Memory
55

¨  CPU and GPU have separate memory spaces
¤ Data is moved across PCI-e bus
¤ Use functions to allocate/set/copy memory on GPU
¤ Very similar to corresponding C functions

¨  Pointers are just addresses
¤ Can’t tell from the pointer value whether the address is

on CPU or GPU
¤ Must exercise care when dereferencing:

n Dereferencing CPU pointer on GPU will likely crash
n Same for vice versa

Additional memories

¨  Textures
¤ Read-only
¤ Data resides in device memory
¤ Different read path, includes specialized caches

¨  Constant memory
¤ Data resides in device memory
¤ Manually managed
¤ Small (e.g., 64KB)
¤ Assumes all threads in a block read the same addresses

n Serializes otherwise

C for CUDA
57

¨  Philosophy: provide minimal set of extensions necessary

¨  Function qualifiers:
__global__ void my_kernel() { }
__device__ float my_device_func() { }

¨  Execution configuration:
dim3 gridDim(100, 50); // 5000 thread blocks
dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M total)
my_kernel <<< gridDim, blockDim >>> (...); // Launch kernel

¨  Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index

void syncthreads(); // Thread synchronization

Our first CUDA program 58

First CUDA program

¨  Determine mapping of operations and data to threads
¨  Write kernel(s)

¤  Sequential code
¤ Written per-thread

¨  Determine block geometry
¤  Threads per block, blocks per grid
¤ Number of grids (>= number of kernels)

¨  Write host code
¤ Memory initialization and copying to device
¤  Kernel(s) launch(es)
¤  Results copying to host

¨  Optimize the kernels

59

Vector add: sequential
60

void vector_add(int size, float* a, float* b, float* c) {

 for(int i=0; i<size; i++) {

 c[i] = a[i] + b[i];

 }

}

How do we parallelize this?
61

¨  What does each thread compute?
¤ One addition per thread
¤ Each thread deals with *different* elements
¤ How do we know which element?

n Compute a mapping of the grid to the data
n  Any mapping will do!

Processing flow
62

Image courtesy of Wikipedia

Kernel
runs here

All this happens from
the host code.

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C) {

 int i = ?

 C[i] = A[i] + B[i];

}

Vector add: Kernel

Calculating the global thread index
64

¨  “global” thread index:
 blockDim.x * blockIdx.x + threadIdx.x;

Grid
Thread Block 0

0 1 2 3
Thread Block 1

0 1 2 3
Thread Block 2

0 1 2 3

blockDim.X

65

Grid
Thread Block 0

0 1 2 3
Thread Block 1

0 1 2 3
Thread Block 2

0 1 2 3

blockDim.X

Calculating the global thread index
65

¨  “global” thread index:
 blockDim.x * blockIdx.x + threadIdx.x;

 4 * 2 + 1 = 9

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C) {

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

Vector add: Kernel

Done with the kernel!

Processing flow
67

Image courtesy of Wikipedia

Kernel
runs here

All this happens from
the host code.

Vector add: Launch kernel
68

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C) {

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main() {

 // initialization code here ...

 N = 5120;

 // launch N/256 blocks of 256 threads each

 vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);

 // cleanup code here ...

}

GPU code

Host code

(can be in the same file)

69

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C) {

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main() {

 // initialization code here ...

 N = 5000;

 // launch N/256 blocks of 256 threads each

 vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);

 // cleanup code here ...

}

GPU code

Host code

(can be in the same file)

What if N = 5000?

Vector add: Launch kernel

70

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C) {

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 if (i<N) C[i] = A[i] + B[i];

}

int main() {

 // initialization code here ...

 N = 5000;

 // launch N/256 blocks of 256 threads each

 vector_add<<< N/256+1,256 >>>(deviceA, deviceB,
deviceC);

 // cleanup code here ...

}

GPU code

Host code

(can be in the same file)

What if N = 5000?

Vector add: Launch kernel

Memory Allocation / Release
71

¨  Host (CPU) manages device (GPU) memory:
¤  cudaMalloc(void **pointer, size_t nbytes)
¤  cudaMemset(void *pointer, int val, size_t count)
¤  cudaFree(void* pointer)

int n = 1024;
int nbytes = n * sizeof(int);
int* data = 0;
cudaMalloc(&data, nbytes);
cudaMemset(data, 0, nbytes);
cudaFree(data);

Data Copies
72

¨  cudaMemcpy(void *dst, void *src,
 size_t nbytes,
 enum cudaMemcpyKind direction);

¤  returns after the copy is complete
¤  blocks CPU thread until all bytes have been copied
¤  doesn’t start copying until previous CUDA calls complete

¨  enum cudaMemcpyKind
¤ cudaMemcpyHostToDevice
¤ cudaMemcpyDeviceToHost
¤ cudaMemcpyDeviceToDevice

¨  Non-blocking copies are also available
¤ DMA transfers, overlap computation and communication

73

int main(int argc, char** argv) {

 float *hostA, *deviceA, *hostB, *deviceB, *hostC, *deviceC;

 int size = N * sizeof(float);

 // allocate host memory

 hostA = malloc(size);

 hostB = malloc(size);

 hostC = malloc(size);

 // initialize A, B arrays here...

 // allocate device memory

 cudaMalloc(&deviceA, size);

 cudaMalloc(&deviceB, size);

 cudaMalloc(&deviceC, size);

Vector add: Host

74

 // transfer the data from the host to the device
 cudaMemcpy(deviceA, hostA, size, cudaMemcpyHostToDevice);

 cudaMemcpy(deviceB, hostB, size, cudaMemcpyHostToDevice);

 // launch N/256 blocks of 256 threads each
 vector_add<<<N/256, 256>>>(deviceA, deviceB, deviceC);

 // transfer the result back from the GPU to the host

 cudaMemcpy(hostC, deviceC, size, cudaMemcpyDeviceToHost);

}

Vector add: Host

Done with the host code!

Summary

¨  Determine mapping of operations and data to threads
¨  Write kernel(s)

¤  Sequential code
¤ Written per-thread

¨  Determine block geometry
¤  Threads per block, blocks per grid
¤ Number of grids (>= number of kernels)

¨  Write host code
¤ Memory initialization and copying to device
¤  Kernel(s) launch(es)
¤  Results copying to host

¨  Optimize the kernels

75

Practice ?
76

¨  Let’s try this in practice

¨  Run on DAS4
¨  You need an ssh client

¤ On Linux/Mac: terminal will do
¤ On Windows: download putty

n http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html

¨  Use vim to see the files
¨  Follow the directions in the manual for Assignment 1

and 2

Practice [cont]
77

¨  Vim commands:
¤  i – enables editing
¤ Esc – finishes editing
¤  :qw – exit and save changes
¤  :q! – exit without saving changes

¨  “make” – to compile

Advanced CUDA 3

Scheduling and synchronization

Thread Scheduling

¨  Order in which thread blocks are scheduled is
undefined!
¤ any possible interleaving of blocks should be valid
¤ presumed to run to completion without preemption
¤ can run in any order
¤ can run concurrently OR sequentially

¨  Order of threads within a block is also undefined!

79

Global synchronization

¨  Q: How do we do global synchronization with these
scheduling semantics?

80

Global synchronization

¨  Q: How do we do global synchronization with these
scheduling semantics?

¨  A1: Not possible!

81

Global synchronization

¨  Q: How do we do global synchronization with these
scheduling semantics?

¨  A1: Not possible!
¨  A2: Finish a grid, and start a new one!

82

Global synchronization

¨  Q: How do we do global synchronization with these
scheduling semantics?

¨  A1: Not possible!
¨  A2: Finish a grid, and start a new one!

step1<<<grid1,blk1>>>(...);

// CUDA ensures that all writes from step1 are complete.

step2<<<grid2,blk2>>>(...);

¨  We don't have to copy the data back and forth!

83

Atomics

¨  Guarantee that only a single thread has access to a
piece of memory during an operation
¤ No loss of data
¤ Ordering is still arbitrary

¨  Different types of atomic instructions
¤ Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor
¤ On device memory and/or shared memory

¨  Much more expensive than load + operation + store

84

Example: Histogram

// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 buckets[c] += 1;
}

85

Example: Histogram

// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 buckets[c] += 1;
}

86

Example: Histogram

// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter atomically

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 atomicAdd(&buckets[c], 1);
}

87

1.  Occupancy
2.  Shared Memory
3.  Coalescing
4.  Streams
5.  Shared Memory Bank Conflicts

CUDA: optimizing your application 4

Thread Scheduling

¨  SMs implement zero-overhead warp scheduling
¤ A warp is a group of 32 threads that runs concurrently on an SM
¤ At any time, the number of warps concurrently executed by an SM

is limited by its number of cores.
¤ Warps whose next instruction has its inputs ready for consumption

are eligible for execution
¤  Eligible Warps are selected for execution on a prioritized

scheduling policy
¤ All threads in a warp execute the same instruction when selected

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

89

Stalling warps

¨  What happens if all warps are stalled?
¤ No instruction issued → performance lost

¨  Most common reason for stalling?
¤ Waiting on global memory

¨  If your code reads global memory every couple of
instructions
¤ You should try to maximize occupancy

90

Occupancy

¨  What determines occupancy?
¨  Limited resources!

¤ Register usage per thread
¤ Shared memory per thread block

91

Resource Limits (1)

¨  Pool of registers and shared memory per SM
¤  Each thread block grabs registers & shared memory
¤  If one or the other is fully utilized no more thread blocks

TB 0

Registers Shared Memory

TB 1

TB 2

TB 0

TB 1

TB 2

TB 0

Registers

TB 1
TB 0

TB 1

Shared Memory

92

Resource Limits (2)

¨  Can only have P thread blocks per SM
¤  If they’re too small, can’t fill up the SM
¤ Need 128 threads / block on gt200 (4 cycles/instruction)
¤ Need 192 threads / block on Fermi (6 cycles/instruction)

¨  Higher occupancy has diminishing returns for hiding
latency

93

Hiding Latency with more threads
94

How do you know what you’re using?

¨  Use compiler flags to get register and shared
memory usage
¤ “nvcc -Xptxas –v”

¨  Use the NVIDIA Profiler
¨  Plug those numbers into CUDA Occupancy

Calculator

¨  Maximize occupancy for improved performance
¤ Empirical rule! Don’t overuse!

95

Thread divergence

¨  “I heard GPU branching is expensive. Is this true?”

__global__ void Divergence(float* dst,float* src)
{
 float value = 0.0f;

 if (threadIdx.x % 2 == 0)
// active threads : 50%
 value = src[0] + 5.0f;
 else
// active threads : 50%
 value = src[0] – 5.0f;

 dst[index] = value;
}

Execution
98

Worst case performance loss:
 50% compared with the non divergent case.

Another example
99

Performance penalty?
100

¨  Depends on the amount of divergence
¤ Worst case: 1/32 performance

n When each thread does something different

¨  Depends on whether branching is data- or ID-
dependent
¤  If ID – consider grouping threads differently
¤  If data – consider sorting

¨  Non-diverging warps => NO performance penalty
¤  In this case, branches are not expensive …

1.  Occupancy
2.  Shared Memory
3.  Coalescing
4.  Streams
5.  Shared Memory Bank Conflicts

CUDA: optimizing your application 4

Matrix multiplication example
102

¨  C = A * B
¨  Each element C,i,j
 = dot(row(A,i),col(B,j))
¨  Parallelization strategy

¤ Each thread computes element in C
¤ 2D kernel

B

C A

Matrix multiplication implementation
103

__global__ void mat_mul(float *a, float *b,

 float *c, int width)

{

 // calc row & column index of output element

 int row = blockIdx.y*blockDim.y + threadIdx.y;

 int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

 // do dot product between row of a and column of b

 for(int k = 0; k < width; k++) {

 result += a[row*width+k] * b[k*width+col];
}

 c[row*width+col] = result;

}

B

CA

Matrix multiplication performance
104

Loads per dot product term 2 (a and b) = 8 bytes
FLOPS 2 (multiply and add)
AI 2 / 8 = 0.25
Performance GTX 580 1581 GFLOPs
Memory bandwidth GTX 580 192 GB/s
Attainable performance 192 * 0.25 = 48 GFLOPS
Maximum efficiency 3.0 % of theoretical peak

Data reuse
105

¨  Each input element
in A and B is read
WIDTH times

¨  Load elements into
shared memory

¨  Have several
threads use local
version to reduce
the memory
bandwidth

B

C A

WIDTH

Using shared memory
106

¨  Partition kernel loop into phases
¨  In each thread block, load a tile

of both matrices into shared
memory each phase

¨  Each phase, each thread
computes a partial result

TILE_WIDTH

B

A C
1

1

3

2 3

2

Matrix multiply with shared memory
107

__global__ void mat_mul(float *a, float *b,
 float *c, int width) {

 // shorthand
 int tx = threadIdx.x, ty = threadIdx.y;
 int bx = blockIdx.x, by = blockIdx.y;

 // allocate tiles in shared memory
 __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
 __shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

 // calculate the row & column index
 int row = by*blockDim.y + ty;
 int col = bx*blockDim.x + tx;

float result = 0;

Matrix multiply with shared memory
108

 // loop over input tiles in phases
 for(int p = 0; p < width/TILE_WIDTH; p++) {
 // collaboratively load tiles into shared memory
 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col];
 __syncthreads();

 // dot product between row of s_a and col of s_b
 for(int k = 0; k < TILE_WIDTH; k++) {
 result += s_a[ty][k] * s_b[k][tx];
 }

 __syncthreads();
 }

 c[row*width+col] = result;
}

B

A C
1 2 3

1

2

3

Use of Barriers in mat_mul
109

¨  Two barriers per phase:
¤ __syncthreads after all data is loaded into shared memory
¤ __syncthreads after all data is read from shared memory
¤ Second __syncthreads in phase p guards

the load in phase p+1

¨  Use barriers to guard data
¤ Guard against using uninitialized data
¤ Guard against corrupting live data

Matrix multiplication performance
110

Original shared memory

Global loads 2N3 * 4 bytes (2N3 / TILE_WIDTH) * 4 bytes

Total ops 2N3 2N3

AI 0.25 0.25 * TILE_WIDTH

Performance GTX 580 1581 GFLOPs

Memory bandwidth GTX 580 192 GB/s

AI needed for peak 1581 / 192 = 8.23

TILE_WIDTH required to
achieve peak

0.25 * TILE_WIDTH = 8.23,
TILE_WIDTH = 32.9

1.  Occupancy
2.  Shared Memory
3.  Coalescing
4.  Streams
5.  Shared Memory Bank Conflicts

CUDA: optimizing your application 4

Coalescing
112

Consider the stride of your accesses

__global__ void foo(int* input, float3* input2) {

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 // Stride 1, OK!

 int a = input[i];

 // Stride 2, half the bandwidth is wasted

 int b = input[2*i];

 // Stride 3, 2/3 of the bandwidth wasted

 float c = input2[i].x;

}

113

Example: Array of Structures (AoS)

struct record {
 int key;
 int value;
 int flag;
};

record *d_records;
cudaMalloc((void**)&d_records, ...);

114

Example: Structure of Arrays (SoA)

Struct SoA {
 int* keys;
 int* values;
 int* flags;
};

SoA d_SoA_data;
cudaMalloc((void**)&d_SoA_data.keys, ...);
cudaMalloc((void**)&d_SoA_data.values, ...);
cudaMalloc((void**)&d_SoA_data.flags, ...);

115

Example: SoA vs AoS

__global__ void kernel(record* AoS_data,
 SoA SoA_data) {
 int i = blockDim.x * blockIdx.x + threadIdx.x;

 // AoS wastes bandwidth
 int key1 = AoS_data[i].key;

 // SoA efficient use of bandwidth
 int key2 = SoA_data.keys[i];
}

116

Memory Coalescing

¨  Structure of arrays is often better than array of
structures

¨  Very clear win on regular, stride 1 access patterns
¨  Unpredictable or irregular access patterns are

case-by-case
¨  Can lose a factor of 10x – 30x!

117

CUDA: Streams 118

1.  Occupancy
2.  Shared Memory
3.  Coalescing
4.  Streams
5.  Shared Memory Bank Conflicts

What are streams?
119

¨  Stream = a sequence of operations that execute on
the device in the order in which they are issued by
the host code.

¨  Same stream: In-Order execution
¨  Different streams: Out-of-Order execution

¨  Default stream = Synchronizing stream
¤ No operation in the default stream can begin until all

previously issued operations in any stream on the device have
completed.

¤ An operation in the default stream must complete before any
other operation in any stream on the device can begin.

Default stream: example
120

¤ All operations happen in the same stream
¤ Device (GPU)

n  Synchronous execution
n  all operations execute (in order), one after the previous has finished

n  Unaware of CpuFunction()
¤ Host (CPU)

n  Launches increment and regains control
n  *May* execute CpuFunction *before* increment has finished
n  Final copy starts *after* both increment and CpuFunction()

have finished

cudaMemcpy(d_a, a, numBytes,cudaMemcpyHostToDevice);
 increment<<<1,N>>>(d_a);
 CpuFunction(b);
cudaMemcpy(a, d_a, numBytes,cudaMemcpyDeviceToHost);

Non-default streams
121

¨  Enable asynchronous execution and overlaps
¤ Require special creation/deletion of streams

n  cudaStreamCreate(&stream1)
n  cudaStreamDestroy(stream1)

¤ Special memory operations
n  cudaMemcpyAsync(deviceMem, hostMem, size,

cudaMemcpyHostToDevice, stream1)

¤ Special kernel parameter (the 4th one)
n  increment<<<1, N, 0, stream1>>>(d_a)

¨  Synchronization
¤ All streams

n  cudaDeviceSynchronize()

¤ Specific stream:
n  cudaStreamSyncrhonize(stream1)

Computation vs. communication
122

 //Single stream, numBytes = 16M, numElements = 4M
cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
kernel<<blocks,threads>>(d_a, firstElement);
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

C1060 (pre-Fermi): 12.9ms

C2050 (Fermi): 9.9ms

Computation-communication overlap[1]*
123

for (int i = 0; i < nStreams; ++i) {
 int offset = i * streamSize;
 cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes,
stream[i]);
 kernel<<blocks,threads,0,stream[i]>>(d_a, offset);
 cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes,
stream[i]);
}

C1060 (pre-Fermi): 13.63 ms (worse than sequential)

C2050 (Fermi): 5.73 ms (better than sequential)

https://github.com/parallel-forall/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu

Computation-communication overlap[2]*
124

for (int i = 0; i < nStreams; ++i) offset[i]=i * streamSize;
for (int i = 0; i < nStreams; ++i)
 cudaMemcpyAsync(&d_a[offset[i]], &a[offset[i]], streamBytes,

cudaMemcpyHostToDevice, stream[i]);

for (int i = 0; i < nStreams; ++i)
kernel<<blocks,threads,0,stream[i]>>(d_a, offset);

for (int i = 0; i < nStreams; ++i)
 cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes,

cudaMemcpyDeviceToHost, stream[i]);

C1060 (pre-Fermi): 8.84 ms (better than sequential)

C2050 (Fermi): 7.59 ms (better than sequential, worse than v1)

http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/

CUDA: optimizing your application 125

1.  Occupancy
2.  Shared Memory
3.  Coalescing
4.  Streams
5.  Shared Memory Bank Conflicts

Shared Memory Banks

¨  Shared memory is banked
¤ Only matters for threads within a warp
¤ Full performance with some restrictions

n Threads can each access different banks
n Or can all access the same value

¨  Consecutive words are in different banks
¨  If two or more threads access the same bank but

different value, we get bank conflicts

126

Bank Addressing Examples: OK

n  No Bank Conflicts n  No Bank Conflicts

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

127

Bank Addressing Examples: BAD

n  2-way Bank Conflicts n  8-way Bank Conflicts

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0 x8

x8

128

Trick to Assess Performance Impact

¨  Change all shared memory reads to the same value
¨  All broadcasts = no conflicts
¨  Will show how much performance could be

improved by eliminating bank conflicts

¨  The same doesn’t work for shared memory writes
¤ So, replace shared memory array indices with
 threadIdx.x
¤  (Could also be done for the reads)

129

OpenCL:
Programming GPUs, CPUs, APUs

5

Portability

¨  Inter-family vs inter-vendor
¤ NVIDIA Cuda runs on all NVIDIA GPU families
¤ OpenCL runs on all GPUs, Cell, CPUs

¨  Parallelism portability
¤ Different architecture requires different granularity
¤ Task vs data parallel

¨  Performance portability
¤ Can we express platform-specific optimizations?

131

The Khronos group
132

OpenCL: Open Compute Language

¨  Architecture independent
¨  Explicit support for many-cores
¨  Low-level host API

¤ Uses C library, no language extensions

¨  Separate high-level kernel language
¤ Explicit support for vectorization

¨  Run-time compilation
¨  Architecture-dependent optimizations

¤ Still needed
¤ Possible

133

Cuda vs OpenCL Terminology

CUDA OpenCL
Thread Work item
Thread block Work group
Device memory Global memory
Constant memory Constant memory
Shared memory Local memory
Local memory Private memory

134

Cuda vs OpenCL Qualifiers

CUDA OpenCL
__constant__ __constant
__device__ __global
__shared__ __local

CUDA OpenCL
__global__ __kernel
__device__ (no qualifier needed)

Functions

Variables

135

Cuda vs OpenCL Indexing

CUDA OpenCL
gridDim get_num_groups()
blockDim get_local_size()
blockIdx get_group_id()
threadIdx get_local_id()
Calculate manually get_global_id()
Calculate manually get_global_size()

__syncthreads() → barrier()

136

Vector add: Cuda vs OpenCL kernel

__global__ void
vectorAdd(float* a, float* b, float* c) {
 int index = blockIdx.x * blockDim.x + threadIdx.x;
 c[index] = a[index] + b[index];
}

__kernel void
vectorAdd(__global float* a, __global float* b,
 __global float* c) {
 int index = get_global_id(0);
 c[index] = a[index] + b[index];
}

CUDA

OpenCL

137

OpenCL VectorAdd host code (1)

const size_t workGroupSize = 256;
const size_t nrWorkGroups = 3;

const size_t totalSize = nrWorkGroups * workGroupSize;

cl_platform_id platform;
clGetPlatformIDs(1, &platform, NULL);

// create properties list of key/values, 0-terminated.

cl_context_properties props[] = {

 CL_CONTEXT_PLATFORM, (cl_context_properties)platform,
 0

};

cl_context context = clCreateContextFromType(props,
CL_DEVICE_TYPE_GPU, 0, 0, 0);

138

OpenCL VectorAdd host code (2)

cl_device_id device;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_DEFAULT, 1,

 &device, NULL);

// create command queue on 1st device the context reported
cl_command_queue commandQueue =

 clCreateCommandQueue(context, device, 0, 0);

// create & compile program

cl_program program = clCreateProgramWithSource(context, 1,
 &programSource, 0, 0);

clBuildProgram(program, 0, 0, 0, 0, 0);

// create kernel
cl_kernel kernel = clCreateKernel(program, "vectorAdd",0);

139

OpenCL VectorAdd host code (3)

float* A, B, C = new float[totalSize]; // alloc host vecs
// initialize host memory here...

// allocate device memory

cl_mem deviceA = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 totalSize * sizeof(cl_float), A, 0);

cl_mem deviceB = clCreateBuffer(context,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 totalSize * sizeof(cl_float), B, 0);

cl_mem deviceC = clCreateBuffer(context,

 CL_MEM_WRITE_ONLY, totalSize * sizeof(cl_float), 0, 0);

140

OpenCL VectorAdd host code (4)

// setup parameter values
clSetKernelArg(kernel, 0, sizeof(cl_mem), &deviceA);

clSetKernelArg(kernel, 1, sizeof(cl_mem), &deviceB);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &deviceC);

clEnqueueNDRangeKernel(commandQueue, kernel, 1, 0,

 &totalSize, &workGroupSize, 0,0,0); // execute kernel

// copy results from device back to host, blocking

clEnqueueReadBuffer(commandQueue, deviceC, CL_TRUE, 0,
 totalSize * sizeof(cl_float), C, 0, 0, 0);

delete[] A, B, C; // cleanup

clReleaseMemObject(deviceA); clReleaseMemObject(deviceB);
clReleaseMemObject(deviceC);

141

Summary and Conclusions 142

Summary and conclusions

¨  Higher performance cannot be reached by
increasing clock frequencies anymore

¨  Solution: introduction of large-scale parallelism
¨  Multiple cores on a chip

¤ Today:
n Up to 48 CPU cores in a node
n Up to 3200 compute elements on a single GPU

¤ Host system can contain multiple GPUs: 10,000+ cores
¤ We can build clusters of these nodes!

¨  Future: 100,000s – millions of cores?

143

Summary and conclusions

¨  Many different types of many-core hardware
¨  Very different properties

¤ Performance
¤ Programmability
¤ Portability

¨  It's all about the memory
¨  Choose the right platform for your application

¤ Arithmetic intensity / Operational intensity
¤ Roofline model

144

Open questions

¨  New application domains – e.g., signal processing,
graph processing.
¤ Perfomrance analysis
¤ Peformance prediction
¤ Modeling

¨  Memory patterns understanding, description,
detection, automatic improvement
¤ Local memory usage

¨  Heterogeneous computing
¤ Using both the host and the device

¨  Application-device fitting

145

Questions?
146

¨  Slides are/will be available
¨  If you are interested in working with us on using

GPUs for new applications, let us know!

 A.L.Varbanescu@uva.nl

Backup slides
147

Example: Work queue

// For algorithms where the amount of work per item
// is highly non-uniform, it often makes sense to
// continuously grab work from a queue.

__global__
void workq(int* work_q, int* q_counter,
 int queue_max, int* output)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int q_index = atomicInc(q_counter, queue_max);
 int result = do_work(work_q[q_index]);
 output[q_index] = result;
}

148

Using shared memory

// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]

__global__ void adj_diff_naive(int *result, int *input) {

 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0) {

 // each thread loads two elements from device memory

 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i – x_i_minus_one;

 }
}

149

Using shared memory

// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]

__global__ void adj_diff_naive(int *result, int *input) {

 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0) {

 // each thread loads two elements from device memory

 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i – x_i_minus_one;

 }
}

150

Using shared memory

// Adjacent Difference application:
// compute result[i] = input[i] – input[i-1]

__global__ void adj_diff_naive(int *result, int *input) {

 // compute this thread’s global index
 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 if(i > 0) {

 // each thread loads two elements from device memory

 int x_i = input[i];
 int x_i_minus_one = input[i-1];

 result[i] = x_i – x_i_minus_one;

 }
} The next thread also reads input[i]

151

Using shared memory
__global__ void adj_diff(int *result, int *input) {

 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 __shared__ int s_data[BLOCK_SIZE]; // shared, 1 elt / thread

 // each thread reads 1 device memory elt, stores it in s_data

 s_data[threadIdx.x] = input[i];

 // avoid race condition: ensure all loads are complete

 __syncthreads();

 if(threadIdx.x > 0) {

 result[i] = s_data[threadIdx.x] – s_data[threadIdx.x–1];

 } else if(i > 0) {

 // I am thread 0 in this block: handle thread block boundary

 result[i] = s_data[threadIdx.x] – input[i-1];

 }

}

152

Using shared memory: coalescing
__global__ void adj_diff(int *result, int *input) {

 unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

 __shared__ int s_data[BLOCK_SIZE]; // shared, 1 elt / thread

 // each thread reads 1 device memory elt, stores it in s_data

 s_data[threadIdx.x] = input[i]; // COALESCED ACCESS!

 // avoid race condition: ensure all loads are complete

 __syncthreads();

 if(threadIdx.x > 0) {

 result[i] = s_data[threadIdx.x] – s_data[threadIdx.x–1];

 } else if(i > 0) {

 // I am thread 0 in this block: handle thread block boundary

 result[i] = s_data[threadIdx.x] – input[i-1];

 }

}

153

Backup slides

154

CPU vs GPU Chip
155

AMD Magny-Cours (6 cores) ATI 4870 (800 cores)

1 billion transistors
256 mm2

2 billion transistors
346 mm2

ATI GPUs

Latest generation ATI
157

¨  Southern Islands
¨  1 chip: HD 7970

¤ 2048 cores
¤ 264 GB/sec memory bandwidth
¤ 3.8 tflops single, 947 gflops double precision
¤ Maximum power: 250 Watts
¤ 399 euros!

¨  2 chips: HD 7990
¤ 4096 cores, 7.6 tflops

¨  Comparison: entire 72-node DAS-4 VU cluster has
4.4 tflops

ATI 5870 architecture overview
158

ATI 5870 SIMD engine
159

¨  Each of the 20 SIMD engines has:
¤  16 thread processors x 5 stream cores = 80 scalar stream processing units
¤  20 * 16 * 5 = 1600 cores total
¤  32KB Local Data Share
¤  its own control logic and runs from a shared set of threads
¤  a dedicated fetch unit with 8KB L1 cache
¤  a 64KB global data share to communicate with other SIMD engines

ATI 5870 thread processor
160

¨  Each thread processor includes:
¤ 4 stream cores + 1 special function

stream core
¤ general purpose registers

¨  FMA in a single clock

ATI 5870 Memory Hierarchy
161

¨  EDC (Error Detection Code)
¤ CRC Checks on Data Transfers for Improved Reliability

at High Clock Speeds

¨  Bandwidths
¤ Up to 1 TB/sec L1 texture fetch bandwidth
¤ Up to 435 GB/sec between L1 & L2
¤ 153.6 GB/s to device memory
¤ PCI-e 2.0, 16x: 8GB/s to main memory

Local

Shared

Device

Device Local Shared

Non - unified Address Space

Unified Address Space

0 32 - bit

0 40 - bit

* p _ local

* p _ shared

* p _ device

* p

Unified Load/Store Addressing
162

A Common Programming Strategy

¨  Partition data into subsets that fit into shared
memory

163

A Common Programming Strategy

¨  Handle each data subset with one thread block

164

A Common Programming Strategy

¨  Load the subset from device memory to shared
memory, using multiple threads to exploit memory-
level parallelism

165

A Common Programming Strategy

¨  Perform the computation on the subset from shared
memory

166

A Common Programming Strategy

¨  Copy the result from shared memory back to device
memory

167

