Benedict R. Gaster Lee Howes David Kaeli
Perhaad Mistry Dana Schaa

UNIVERSITY OF AMSTERDAM
X

Heterogeneous Computing

;f.!!'ff-_';,r":-_’ H OpenCL Pgrg}gnlﬁng s

L

1

The

CUDA

e,

—F = N

HANDBOOK

Programming Massively
Caomprehensive Guic

Parallel Processors

Aaftab Munshi « Benedict R. Gaster
Timothy G. Mattson « James Fung * Dan Ginsburg

Faves€ bn Posbent« Tul el hai Wasied Lasversty

[]
CUDA

ROB FARBER PROGRAMMING

‘ U D A A DEVELOPER'S GUIDE TO PARALLEL COMPUTING WITH GPU'S

AR AR |]
_ - faintinsd
GPU PROGRAMMING = ——

HPC courses

MS 2.

S naenn

Ana Lucia Varbanescu

UvA, January 2016

Graphics in 1980

Graphics in 2000

eric ate Ares's rocket
Mr Elusive ate Ares's rocket
Ares was melted by Willits's plasmagun

You fragged Ares
place with 28

Graphics in 2015

==

L pr— -
SRR

-
o t—

’

ey 3“~=3-‘?§_’M-‘""’E

o1

A
ES

7 Lo S

KEE-
-\
>

e
‘T.‘
o= SV '.:_2 -? —er=

\

5

g
1]
et

A2

%‘\
4
S
.
5
e

".
’

/
)
-y
1
!
“ﬁf. = 5-'-,

Y o

>
: ‘Il J."‘dx '..-iw' JTIA

l(&" “‘IU

GPUs in movies
I

1 From Ariel in Little Mermaid to Brave

So ...

01 GPUs are a steady market
Gaming
CAD-like activities
® Traditional or not ...
Visualisation
® Scientific or not ...
0 GPUs are increasingly used for other types of
applications
Number crunching in science, finance, image processing

(fast) Memory operations in big data processing

Another GPGPU history

Growth of GPU Computing

100M [E] m[ﬂ[i][i”i 430M

CUDA -Capable GPUs CUDA-Capable GPUs

el c Il o 1o [olololofolololo| o

CUDA Downloads CUDA Downloads

University Courses

4’000 A A A A b [) |[—) E—) | N [==h 37’000
Academic Papers %%%%%%%%%E Academic Papers

2008 2013

TODO List
N

1. Briefly on performance
2. GPGPUs

3. CUDA

4. If (time_left && vote)
advanced CUDA

else

talk more about performance

Performance [1]
—

0 Latency/delay
The time for one operation (instruction) to finish, L
To improve: minimize L
® Lower is better

0 Throughput
The number of operations (instructions) per time unit, T
To improve: maximize T
® Higher is better
® Thus, time per instruction decreases, on average

0 Example: T man builds a house in 10 days.
Latency improvement: ...

Throughput improvement: ...

Performance [2]
—

0 How do we get faster computers?

Faster Processors and memory

® Increase clock frequency 2 latency boost

Better memory techniques

® Use memory hierarchies = latency boost

® More memory closer to processor > latency boost
Better processing techniques

m Use pipelining = throughput boost

More processing units (cores, threads, ...)

m Use parallelism/concurrency = throughput boost (only?)

Accelerators

m Use specialized functional units = latency+throughput boost

- Why multi- and many-cores?

Multi-cores = processors with multiple,
homogeneous cores

Many-cores = GPUs & alikes

b4
Moore s Law
]

1 Gordon Moore (co-founder of Intel) predicted in 1965
that the transistor density of semiconductor chips would

double roughly every 18 months.

Transistor Counts
T

10,000,000,000
Br
i
1,000,000,000 G6® Srgkalemoo vy
| o o'o:")
e % ®
00 I.
100,000,000

| Pentium 4 oﬂ. PentmumM
v
8 num lII
O 10,000,000 g
%) e
vy | S04t tnur%

6010
% 1,000,000 oo .
P | 80386 6804
80286 o @ 968030
100,000 ® 68020
i ®68000
| 8086 ® ©3088
10000 3235
l sogs .
@ 6800
[4004
71970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

Traditionally ...
T

0 More transistors = more functionality

0 Improved technology = faster clocks = more speed

0 Thus, every 18 months, we expect better and faster
processors.

0 They were all sequential: they execute one
operation per clock cycle.

Revolution in Processors

15|
/, 0 Chip density is
- "/ continuing to
Intel CPU Trends A .
(sources: Intel, Wikipedia, K. Olukotun} - INcredse CIbOUT 2X
m ’ every 2 years
10,000
0 BUT
000 0 Clock speed is not
100 o Performance per
cycle is not
o Power is not
cec e
o [[|

1970 1975 1980 1985 1990 1995 2000 2005 2010

New ways to use transistors
e

0 Parallelism on-chip: multi-core processors

Transformed in many-core processors.

‘“ . . ””
0 Multicore revolution
Every machine is a parallel machine.

Accelerators start playing an important role.
m Specialized
® Energy efficient

® Used on demand

0 Can all applications use this parallelism?

0 Can we program all these architectures efficiently?

Performance?¢ Productivity?

GPU vs. CPU performance
B

Theoretical GFLOP/s
1 GFLOPs = 10"9 ops / second

5750
5500

5250) .
5000 ==p==NVIDIA GPU Single Precision

..
4750 est==NV|DIA GPU Double Precision

GeForce 780 Ti

4500 e=p==|ntel CPU Double Precision GeForce GTXTITAN

4250 emgmm|ntel CPU Single Precision

4000

3750

3500

3250

3000 GeForce GTX 680
2750

2500

2250

2000

1750 GeForce GTX 580
1500 GeForce GTX 480
1250

1000
750 GeForce 8800 GTX

Tesla K40
Tesla K20X

GeForce GTX 280
Tesla M2090

Tesla C2050
Tesla C1060
Harpertown

500 GefForce 7800-GTX

GeForce 6800 Ultra
250 GeForce FX 5800

vy Bridge

oodcrest

0 " pentium 4 field Westmere

Bloom
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

GPU vs. CPU performance

Theoretical GB/s

1 GB/s = 8 x10"9 bits / second

GeForce 780 Ti

360

330

300

an@ue (Pl Tesla K40

2 70 -.—(Jel-()lce GPU | l Kzox
240 N =ote i

210

GeForce GTX 480

180

GeForce GTX 680
Tesla M2090

150 GeForce GTX 230

Tesla C2050
120

GeForce 8800 GTX
90

Tesla C1060

lvy Bridge
%0 GeForce 7800 GT Sandy Bridge

Bloomfield

GeForce 6800 GT

30
Woodcrest
GeForce FX 5 Prescott Westmere
0 Harnertown
orthwood '

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Why do we use many-cores?
s
0 Performance

Large scale parallelism

0 Power Efficiency

Use transistors more efficiently

01 Price (GPUs)

Game market is huge, bigger than Hollywood
m Gaming pays for our HPC needs!

Mass production, economy of scale

0 Prestige
Reach ExaFLOP by 2019/2022 ...

T

GPUs = the hardware
GPGPU = general purpose GPU

(typically related to software /programming)

GPGPU History

“Fermi”
3B xtors

GeForce 8800

681M xtors
GeForce FX

125M xtors
GeForce 3

GeForce® 256 60M xtors
RIVA 128 23M xtors
3M xtors

1995 2000

2010

0 Current generation: NVIDIA Kepler
0 /.1B transistors

0 More cores, more parallelism, more performance

48

36

24

12

GPGPU @ NVIDIA

f ’ Pascal

: Mixed Precision
/ 3D Memory
NVLink

2008 2010 2012 2014 2016 2018

GPUs @ AMD

AMD Radeon Graphics Roadmap

@
@)
=
©
£
O
) =
Q
a

7200, $449

6700, $399

6150, $299

5000, $229

4200, $189

2750, $119

2050, $99

HD 7970 GHz Edition

HD 7970

HD 7950

GTX 680

HD 7870 GHz Edition

GTX 670

GTX 660 Ti

HD 7850

GTX 660

HD 7770 GHz Edition

GTX 650 Ti

HD 7750

GTX 650

GT 640

6300, $499
5650, $399

5000, $299

4350, $229

2900, $149

2000, $109

1200, $89

3DMark Fire Strike
Performance, Priceé

3DMark Fire Strike
Performance, Price

MBARGO UNTIL FEB4, 2013 @ 1201AM ES

GPUs @ ARM

ARM Mali

“Graphics Performance Leadership”

x14 #7
Mali-Te04

-mrmm performance and flexibility
- GPGPU computing with Mliwbm

x14 State of the art bandwidth reduction
Mali-400 MP DirectX11 and next generation Khronos graphics standards up to 2GPids

- World"s first multicore embedded GPU
- High-performance graphics to beyond 1080p
Mmmmmm

@ Mali-300
- Ideal configuration for mid-range use-cases
- Efficient energy and bandwidth usage
8 mali-200
- level All Mali GPUs support the Khronos APls
.mmuwwm OpenVG 1.1 and OpenGL ES 2.0 plus roadmap

... 2010 2011 2012 2013

(NVIDIA) GPUs

0 Architecture
Many (100s) slim cores

Sets of (32 or 192) cores grouped into “multiprocessors”
with shared memory

B SM(X) = stream multiprocessors

Work as accelerators
1 Memory
Shared L2 cache
Per-core caches + shared caches
Off-chip global memory
0 Programming
Symmetric multi-threading

Hardware scheduler

NVIDIA's GPU Architecture

26
8 ¥ Execution Queue)
Control I I | 1
| = G —
P — PP P
CPU §
\ J L A
3 g
2 N
o oy ey
[Unt [Unit Ust | Unt
Host .. - —w
Memory G0 e i) 00 secae i) Cache Seecaie Cche
(t t Level 2t(ache t t)
L oMA Device Memory)

©2010 The Portland Group, Inc.

Parallelism

0 Data parallelism (fine-grain)
Restricted forms of task parallelism possible with newest
generation of NVIDIA GPUs

0 SIMT (Single Instruction Multiple Thread) execution

Many threads execute concurrently
® Same instruction

m Different data elements

® HW automatically handles divergence

Not same as SIMD because of multiple register sets,
addresses, and flow paths™

0 Hardware multithreading

HW resource allocation & thread scheduling

m Excess of threads to hide latency
m Context switching is (basically) free

*http:/ /yosefk.com /blog /simd-simt-smt-parallelism-in-nvidia-gpus.html

Integration into host system
s

0 Typically PCl Express 2.0

0 Theoretical speed 8 GB/s
0 Effective < 6 GB/s
0 In reality: 4 — 6 GB/s

0 V3.0 recently available
o Double bandwidth

0 Less protocol overhead

x16

CPU vs. GPU

-
o

O

Why so different?
oo

0 Different goals produce different designs!
CPU must be good at everything
GPUs focus on massive parallelism
W Less flexible, more specialized
0 CPU: minimize latency experienced by 1 thread
big on-chip caches
sophisticated control logic
0 GPU: maximize throughput of all threads

threads in flight limited by resources => lots of
resources (registers, etc.)

multithreading can hide latency => no big caches

share control logic across many threads

CPU vs. GPU

1 Movie

1 The Mythbusters
o0 Jamie Hyneman & Adam Savage

o Discovery Channel

0 Appearance at NVIDIA’'s NVISION 2008

e —————— e

MYTHBUSTERS

0 HPC: Tesla C2050

0 More memory, ECC
o 1.0 Tlop SP

o 515 GFlop SP

0 16 streaming
multiprocessors (SM)
0o GTX 580: 16
0 GTX 480: 15
o C2050: 14

0 SMs are independent

0 768 KB L2 cache T | = —

Fermi Streaming Multiprocessor (SM)

0 32 cores per SM P—

(512 cores total) — _—

8- 8-

11 64KB configurable o ———

Core Core Core

L1 cache / shared memory ot

0 32,768 32-bit registers s

Host Interface

i LD/ST

LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

Memory Controller

Core Core Core
Core Core Core
LD/ST
~Interconnect Network ==
64 KB Shared Memory /L1 Cache
Uniform Cache

Tex Tex

Texture Cache
PolyMorph Engine

|Vertex Fetch || Tessellator || qnowPort |

[attribute Setup| [stream output |

CUDA Core Architecture

0 Decoupled floating point
and integer data paths

01 Double precision throughput |

is 50% of single precision

0 Integer operations
optimized for extended
precision

64 bit and wider data
element size

0 Predication field for all
instructions

0 Fused-multiply-add

Memory architecture (since Fermi)
e

0 Configurable L1 cache per SM
0 16KB L1 cache / 48KB Shared
00 48KB L1 cache / 16KB Shared

registers registers

0 Shared L2 cache L1 cache / |IES L1 cache /

shared mem shared mem

Device memory

Host memory

PCl-e
bus

Kepler: the new SMX

A

PolyMorph Engine 2.0
] [Tessellator] [

0 Consumer: e
0 GTX680, GTX780, GTX-Titan |rmpemit————

ks =z T e T s I 3
Register File (65,536 x 32-bit)

D H P‘ 4 3+ 4 3 3$ 3 3 3
Core Core LOIST SFU Core Core Core

o Tesla K10..K40 T

0 SMX features —
11192 CUDA cores T

m 32 in Fermi T

o 32 Special Function Units (SFU ——

Core Core SFU Core Core Core

m 4 for Fermi

132 LOCId/STOI‘e units (LD/ST) Bl e

m 16 for Fermi

Core Core SFU Core Core Core

Texture Cache

64 KB Shared Memory / L1 Cache

0 3x Perf/Watt improvement s

A comparison

_ 38|

FERMI FERMI KEPLER KEPLER

GF100 | GF104 | GK104 | GK110
Compute Capability 2.0 2.1 3.0 3.5
Threads / Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 64
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 8 8 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
48K 48K 32K 32K
48K 48K
Max X Grid Dimension 27A16-1 | 2716-1 | 2732-1 | 2732-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes

Maxwell: the newest SMM

1 Consumer:
o GTX 970, GTX 980, ...

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
D H P < ° Core Core SFU Core Core Core
°
Core Core SFU Core Core Core
2 Core Core SFU Core Core Core
n ° Core SFU Core Core Core

Core SFU Core Core

1 SMM Features:

Core SFU Core Core

0 4 subblocks of 32 cores L L L LD
0 Dedicated L1 /LM per 64 cores et —

Warp Scheduler Warp Scheduler
Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
n Dis p q'l'c h/eCOd e/reg is‘l'e rS p e r Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Core Core Core Core Core Core

3 2 C O r e S Core Core Core Core Core Core
Core Core Core Core Core
0 L2 cache: 2MB (~3X VS. Kepler
Core Core Core Core Core
° Core Core Core Core Core
D 4 O TeXTU r e U n I TS Core Core Core Core Core

Core Core Core Core Core

01 Lower power consumption

“ Programming many-cores

Parallelism
S

0 Threads
Independent units of computation
Expected to execute in parallel

Write once, instantiate many times

1 Concurrent execution

Threads execute in the same time if there are sufficient
resources

0 Assume a processor P with 10 cores and an
application A with:

10 threads: how long does A take?
20 threads: how long does A take?
33 threads: how long does A take?

Parallelism

01 Synchronization = a thread’s execution must depend
on other threads

Barrier = all threads wait to get to barrier before they
continue

Shared variables = more threads RD/WR them

B Locks = threads can use locks to protect the WR sections

Atomic operation = operation completed by a single
thread at a time

0 Thread scheduling = the order in which the threads
are executed on the machine
User-based: programmer decides
OS-based: OS decides (e.g., Linux, Windows)
Hardware-based: hardware decides (e.g., GPUs)

Programming many-cores
I =
= parallel programming:
0 Choose /design algorithm
0 Parallelize algorithm

m Expose enough layers of parallelism
® Minimize communication, synchronization, dependencies

m Overlap computation and communication

O Implement parallel algorithm
® Choose parallel programming model
m (2) Choose many-core platform
0 Tune /optimize application
® Understand performance bottlenecks & expectations
m Apply platform specific optimizations

m (2) Apply application & data specific optimizations

n Programming GPUs in CUDA

CUDA

00 CUDA: Scalable parallel programming
C/C++ extensions
m Other wrappers exist

0 Straightforward mapping onto hardware

Hierarchy of threads (to map to cores)

m Configurable at logical level

Various memory spaces (to map to physical spaces)

®m Usable via variable scopes

0 Scale to 1000s of cores & 100,000s of threads

GPU threads are lightweight
GPUs need 1000s of threads for full utilization

CUDA Model of Parallelism

0 CUDA virtualizes the physical hardware

A block is a virtualized streaming multiprocessor

® threads, shared memory
A thread is a virtualized scalar processor
W registers, PC, state
0 Threads are scheduled onto physical hardware
without pre-emption
threads/blocks launch & run to completion

blocks must be independent

CUDA Model of Parallelism

Software GPU

Hierarchy of threads

\ﬁ Thread
4 b

Host
Memory

\

©2010 The Portland Group, Inc.

Control

DMA

Execution Queue)

Warp lssoe Dual Warp Issue Dual Warp

. g e L s

Specil || Specil Specl | [Specal Specul
ﬁmh‘::m Function | | Femetion

53

Lt Ut Ut
o sonusa |
lock

Level 2 Cache

$ 1 1 $ $

Device Memory

Grid

Using CUDA

0 Two parts of the code:

Device code = GPU code = kernel(s)
® Sequential program

® Write for 1 thread, execute for all

Host code = CPU code

® [nstantiate grid + run the kernel

® Memory allocation, management, deallocation
m C/C++/Java/Python/...

0 Host-device communication
Explicit / implicit via PCl/e
Minimum: data input/output

Processing flow
o

All this happens from
the host code.

Instruct the processinc]

Execute parallel
in each core

=

(GeForce 8800)) |

Kernel
runs here

Processing flow
on CUDA

Image courtesy of Wikipedia

Grids, Thread Blocks and Threads

Thread Block 0, 0 Thread Block 0, 1 Thread Block 0, 2

Thread Block 1, 0 Thread Block 1, 1 Thread Block 1, 2

Kernels and grids
T

0 Launch kernel (12 x 6 = 72 instances)

myKernel<<<numBlocks, threadsPerBlock>>>(..);

0 dim3 threadsPerBlock(3,4);
m threadsPerBlock.x = 3
m threadsPerBlock.y = 4
m Each thread:
(threadIdx.x, threadIdx.y)

0 dim3 numBlocks(2,3);
m blockDim.x = 2
m blockDim.y=3
m Each block :
(blockIdx.x,blockIdx.y)

Multiple Device Memory Scopes
N

0 Per-thread private Thread

memory Per-thread
Local Memory

o Stacks, other private SM
dataq, registers

o Each thread has its own
local memory

Per-SM

01 Per-SM shared memory Ai*:nr:rdy

0 Small memory close to the

processor, low latency
Kernel O

[]
D D e Vi C e m e m O r y S S || S
PeCiii e K2R R R
0 GPU frame buffer Per-device

Global

Memory

0 Can be accessed by any
thread in any SM

Memory Spaces in CUDA

54

e
i
-
-

Device Memory
s

0 CPU and GPU have separate memory spaces
Data is moved across PCl-e bus
Use functions to allocate /set/copy memory on GPU

Very similar to corresponding C functions

01 Pointers are just addresses

Can’t tell from the pointer value whether the address is
on CPU or GPU
Must exercise care when dereferencing:

m Dereferencing CPU pointer on GPU will likely crash

m Same for vice versa

Additional memories
-

0 Textures
Read-only
Data resides in device memory

Different read path, includes specialized caches

0 Constant memory
Data resides in device memory

Manually managed

Small (e.g., 64KB)
Assumes all threads in a block read the same addresses

m Serializes otherwise

C for CUDA

0 Philosophy: provide minimal set of extensions necessary

0 Function qualifiers:
__global void my kernel() { }
device float my device func() { }

0 Execution configuration:
dim3 gridDim (100, 50); // 5000 thread blocks

dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M total)
my kernel <<< gridDim, blockDim >>> (...); // Launch kernel

0 Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index

void syncthreads(); // Thread synchronization

- Our first CUDA program

First CUDA program
=N

0 Determine mapping of operations and data to threads

0 Write kernel(s)
Sequential code

Written per-thread

1 Determine block geometry
Threads per block, blocks per grid
Number of grids (>= number of kernels)
1 Write host code
Memory initialization and copying to device
Kernel(s) launch(es)

Results copying to host

0 Optimize the kernels

Vector add: sequential
N

void vector add(int size, float* a, float* b, float* c) {
for(int 1=0; i<size; i++) {
c[i] = a[i] + b[i];

How do we parallelize this?
.

0 What does each thread compute?
One addition per thread
Each thread deals with *different™ elements

How do we know which element?

m Compute a mapping of the grid to the data
Any mapping will do!

Processing flow

All this happens from
the host code.

CPU

opy processing data

(lnstmct the processing)

Memory
for GPU

-
Execute parallel
in each core

Kernel
runs here

Processing flow
on CUDA

Image courtesy of Wikipedia

Vector add: Kernel
I

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) ({
int 1 = ?

C[i] = A[i] + B[1i];

Calculating the global thread index

Grid

Thread Block 0 Thread Block 1 Thread Block 2

0 “global” thread index:
blockDim.x * blockIdx.x + threadldx.x;

Calculating the global thread index

Grid

Thread Block 0 Thread Block 1 m

0 “global” thread index:
blockDim.x * blockIdx.x + threadldx.x;

Vector add: Kernel
I

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[1i];

Processing flow

Main All this happens from
Memory | (1) CPU the host code.

- ' |Copy processing data
l Instruct the processinc]

Copy the msuu]

Mem

3

b Execute parallel
(BaEsrsat 600) q] in each core
orce ——
-)

Kernel
runs here

Processing flow
on CUDA

Image courtesy of Wikipedia

Vector add: Launch kernel
e

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[1i];

} GPU code

int main() { Host code
// initialization code here

N = 5120;

// launch N/256 blocks of 256 threads each

vector add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);

// cleanup code here

(can be in the same file)

Vector add: Launch kernel
oo

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[1i];

} GPU code

What if N = 5000¢

int main() { Host code
// initialization code here

N = 5000;
// launch N/256 blocks of 256 threads each
vector add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);

// cleanup code here

(canbe in the samsg file)

Vector add: Launch kernel

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int i = threadIdx.x + blockDim.x * blockIdx.x;
if (i<N) C[i] = A[i] + B[i];

} GPU code

What if N = 5000¢

int main() { Host code
// initialization code here

N = 5000;
// launch N/256 blocks of 256 threads each

vector add<<< N/256+1,256 >>>(deviceA, deviceB,
deviceC) ;

// cleanup code here

(canbe in the samsg file)

Memory Allocation / Release
N

0 Host (CPU) manages device (GPU) memory:
cudaMalloc (void **pointer, size t nbytes)
cudaMemset (void *pointer, int val, size t count)

cudaFree (void* pointer)

int n = 1024;

int nbytes = n * sizeof(int);
int* data = 0;

cudaMalloc (&data, nbytes) ;
cudaMemset (data, 0, nbytes);
cudaFree (data) ;

Data Copies
0 cudaMemcpy (void *dst, void *src,
size t nbytes,
enum cudaMemcpyKind direction) ;
returns after the copy is complete
blocks CPU thread until all bytes have been copied
doesn’t start copying until previous CUDA calls complete

0 enum cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

1 Non-blocking copies are also available
DMA transfers, overlap computation and communication

Vector add: Host
=

int main(int argc, char** argv) {
float *hostA, *deviceA, *hostB, *deviceB, *hostC, *device(C;

int size = N * sizeof(float);

// allocate host memory
hostA = malloc(size) ;
hostB = malloc(size) ;

hostC = malloc(size) ;
// initialize A, B arrays here...

// allocate device memory
cudaMalloc (&deviceA, size);
cudaMalloc (&deviceB, size) ;

cudaMalloc (&deviceC, size);

Vector add: Host

}

// transfer the data from the host to the device
cudaMemcpy (deviceA, hostA, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (deviceB, hostB, size, cudaMemcpyHostToDevice) ;

// launch N/256 blocks of 256 threads each
vecto;_add<<<N/256, 256>>> (deviceA, deviceB, deviceC);

// transfer the result back from the GPU to the host

cudaMemcpy (hostC, deviceC, size, cudaMemcpyDeviceToHost) ;

Summary

0 Determine mapping of operations and data to threads

0 Write kernel(s)
Sequential code

Written per-thread

1 Determine block geometry
Threads per block, blocks per grid
Number of grids (>= number of kernels)
1 Write host code
Memory initialization and copying to device
Kernel(s) launch(es)

Results copying to host

0 Optimize the kernels

Practice ¢
el

0 Let’s try this in practice

1 Run on DAS4

0 You need an ssh client
0 On Linux/Mac: terminal will do

o On Windows: download putty
m http: //www.chiark.greenend.org.uk /~sgtatham /putty /

download.himl

0 Use vim to see the files

0 Follow the directions in the manual for Assignment 1
and 2

Practice [cont]
I
0 Vim commands:
O i — enables editing
0 Esc — finishes editing
o :qw — exit and save changes

o :q! — exit without saving changes

0 “make” — to compile

- Advanced CUDA

Scheduling and synchronization

Thread Scheduling
0 Order in which thread blocks are scheduled is
undefined!
any possible interleaving of blocks should be valid
presumed to run to completion without preemption
can run in any order

can run concurrently OR sequentially

1 Order of threads within a block is also undefined!

Global synchronization
B

0 Q: How do we do global synchronization with these
scheduling semantics?

Global synchronization
I

0 Q: How do we do global synchronization with these
scheduling semantics?

1 Al: Not possible!

Global synchronization
B

0 Q: How do we do global synchronization with these
scheduling semantics?

1 Al: Not possible!

01 A2: Finish a grid, and start a new one!

Global synchronization
e

0 Q: How do we do global synchronization with these
scheduling semantics?

1 Al: Not possible!

01 A2: Finish a grid, and start a new one!

stepl<<<gridl , blkl1>>>(...);
// CUDA ensures that all writes from stepl are complete.
step2<<<grid2,blk2>>>(...);

o We don't have to copy the data back and forth!

Atomics
e

0 Guarantee that only a single thread has access to a
piece of memory during an operation

No loss of data

Ordering is still arbitrary

0 Different types of atomic instructions
Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor
On device memory and/or shared memory

01 Much more expensive than load + operation + store

Example: Histogram
s

// Determine frequency of colors in a picture.

// Colors have already been converted into integers
// between 0 and 255.

// Each thread looks at one pixel,

// and increments a counter

__global void histogram(int* colors, int* buckets)

{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;
int ¢ = colors|[1i];
buckets|[c] += 1;

Example: Histogram
s

//

// s have already been converted into integers
// 0 and 255.
// Each looks at one pixel,

etermine frequency of colors in a picture.

// and incr ounter

__global void hlS ‘%&r(qu* colors, int* buckets)

{
int 1 = threadIdx.x + Qeox * blockIdx.x;

int ¢ = colors|[i];
buckets[c] += 1;

"b
} ts’0':)

Example: Histogram

// Determine frequency of colors in a picture.

// Colors have already been converted into integers
// between 0 and 255.

// Each thread looks at one pixel,

// and increments a counter atomically

__global void histogram(int* colors, int* buckets)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
int ¢ = colors|[1i];
atomicAdd (&buckets[c], 1),

- CUDA: optimizing your application

1. Occupancy

2. Shared Memory
3. Coalescing

4. Streams

S

Shared Memory Bank Conflicts

Thread Scheduling

1 SMs implement zero-overhead warp scheduling
A warp is a group of 32 threads that runs concurrently on an SM

At any time, the number of warps concurrently executed by an SM
is limited by its number of cores.

Warps whose next instruction has its inputs ready for consumption
are eligible for execution

Eligible Warps are selected for execution on a prioritized
scheduling policy

All threads in a warp execute the same instruction when selected

| TB1, W1 stall |

—TB2, W1 stal—] TB3, W2 stal |
BT TB2 TB3 TB3 TB2 TB1 TB1 TB1 TB3
| o [wr o w2 R W w2 WS w2
Instruction: 1i12i3i4:5:i6[1i2(1:2|1:2[83:4]7:8|1:2]|1:2]|3:i4

—Time-» TB = Thread Block, W = Warp

Stalling warps
o

0 What happens if all warps are stalled?

No instruction issued — performance lost

0 Most common reason for stalling?

Waiting on global memory

0 If your code reads global memory every couple of
instructions

You should try to maximize occupancy

Occupancy
B

0 What determines occupancy?

0 Limited resources!
O Register usage per thread
0 Shared memory per thread block

Resource Limits (1)

92
Registers Shared Memory Registers Shared Memory
TB 2
TB 1
TB 1
—_ TB 1
TB O
TB O TB 1
TB O
TB O

0 Pool of registers and shared memory per SM
Each thread block grabs registers & shared memory

If one or the other is fully utilized ™» no more thread blocks

Resource Limits (2)
93
0 Can only have P thread blocks per SM
If they’re too smaill, can’t fill up the SM
Need 128 threads / block on gt200 (4 cycles/instruction)
Need 192 threads / block on Fermi (6 cycles/instruction)

01 Higher occupancy has diminishing returns for hiding
latency

Hiding Latency with more threads

GB/s

100

80

60

40

20

Throughput, 32-bit words

//kﬂ\fﬂ o

/

/

/

128

256 384 512 640

Threads Per Multiprocessor

768

896

1024

How do you know what you're using?
s

0 Use compiler flags to get register and shared
memory usage
“‘nvec -Xptxas -—-v”
0 Use the NVIDIA Profiler

0 Plug those numbers into CUDA Occupancy
Calculator

0 Maximize occupancy for improved performance

Empirical rule! Don’t overuse!

@) @9~ s CUDA_Occupancy._calculatorxism - Microsoft Excel - = X
Home | Insert Page layout Formulas Data Review View @ - o x
; cut v o - [A) [=] |Swapted 7 rNorma Bad Good o= & :*""S"m AT A
Copy @] Fill ~
paste E T -|I['$ = % o Conditional Format Neutral m Check Cell ﬂ Insert Delete Format Sort & Find &
- J Format Painter [—nl [—l ;}u 22 LG e Formatting ~ as Table - - - (2 Clear ~ Filter~ Select~
Clipboard Fl Font Alignment] Number iEl Cells Editing
Ie Security Warning Macros have been disabled. | 2
MyRegCount - u 25
A LB | ¢ b [E [F [6 [H [1 [4 [k [t [m [N [o P [@ [R]

34 Allocation Per Thread Block

35 Warps 4
36 |Registers 3584

37 Shared Memory 1024
- 38 These data are used in computing the occupancy data in blue

39
40 Maximum Thread Blocks Per Multip! Blocks
41 Limited by Max Warps / Blocks per Multiprocessor 8
42 Limited by Registers per Multiprocessor

43 Limited by Shared Memory per Multiprocessor 16

44 Thread Block Limit Per Multiprocessor highlighted

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Multiprocessor
Warp Occupancy

Varying Block Size Varying Register Count
48
40
2 52
-3
83
24
£
£e
16 2
8
0
16 80 144 208 272 336 400 464 cee s B RERE RSN EE RN ERERScco=Snvm
OO ®
Threads Per Block Registers Per Thread

Multiprocessor
Warp Occupancy

Varying Shared Memory Usage

&

&

]

[N)
=

-
o

@

(=]

Thread divergence
—

0 “l heard GPU branching is expensive. Is this true?”

__global void Divergence(float* dst,float* src)

{
float value = 0.0f;

if (threadIdx.x % 2
// active threads : 50%
value = src[0] + 5.0f;

I
Il
o
N

else
// active threads : 50%
value = src[0] — 5.0f;
dst[index] = value;

Execution
o

ﬁ

{ threadIdx.x % 2 == (
Y

||] \‘ | “ ‘ \‘ || \‘ | \‘ | \}

Worst case performance loss:
50% compared with the non divergent case.

Another example

Time (clocks)

1 2 .o . 8

ALUT ALU2 ALUS8

Not all ALUs do useful work!
Worst case: 1/8 peak performance

(assume logic below is to be executed for each
element in input array ‘A, producing output into
the amay ‘result’)

<unconditional code>
float x = A[i];
if (x » 9) {

} else
float tmp = kMyConstl;

X = 2.f * tmp;

}

<resume unconditional code>

result[i] = x;

Performance penalty?

0 Depends on the amount of divergence
Worst case: 1/32 performance
® When each thread does something different
01 Depends on whether branching is data- or ID-
dependent
If ID — consider grouping threads differently

If data — consider sorting

0 Non-diverging warps => NO performance penalty

In this case, branches are not expensive ...

- CUDA: optimizing your application

1. Occupancy

2. Shared Memory
3. Coalescing

4. Streams

S

Shared Memory Bank Conflicts

Matrix multiplication example
o [

O C=A*B
0 Each element C,i,j
= dot(row(A,i),col(B,j))

0 Parallelization strategy

0 Each thread computes element in C

o 2D kernel I

Matrix multiplication implementation
N

__global void mat mul (float *a, float *b,
float *c, int width)

// calc row & column index of output element
int row = blockIdx.y*blockDim.y + threadIdx.y;
int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and column of b
for(int k = 0; k < width; k++) {
result += a[row*width+k] * b[k*width+col];

}

c[row*width+col] = result;

Matrix multiplication performance
o

Loads per dot product term 2 (a and b) = 8 bytes

FLOPS 2 (multiply and add)

Al 2 /8=0.25
Performance GTX 580 1581 GFLOPs

Memory bandwidth GTX 580 192 GB/s

Attainable performance 192 * 0.25 = 48 GFLOPS

Maximum efficiency 3.0 % of theoretical peak

Data reuse
N

0 Each input element

in A and B is read
WIDTH times WIDTH

0 Load elements into .
shared memory A

0 Have several

threads use local

version to reduce
the memory
bandwidth

Using shared memory
oo

01 Partition kernel loop into phases

. TILE WIDTH
0 In each thread block, load a tile -

of both matrices into shared 1
memory each phase

01 Each phase, each thread
computes a partial result

107

Matrix multiply with shared memory

global void mat mul (float *a, float *b,
float *c, int width) {

// shorthand
int tx = threadIdx.x, ty = threadldx.y;
int bx = blockIdx.x, by blockIdx.y;

// allocate tiles in shared memory
shared float s a[TILE WIDTH] [TILE WIDTH];

shared float s b[TILE WIDTH] [TILE WIDTH];

// calculate the row & column index
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;

float result = 0;

Matrix multiply with shared memory
Cios

// loop over input tiles in phases

for(int p = 0; p < width/TILE WIDTH; p++) {
// collaboratively load tiles into shared memory
s a[ty] [tx] = a[row*width + (p*TILE WIDTH + tx)];
s b[ty] [tx] = b[(p*TILE WIDTH + ty)*width + col];
__syncthreads() ;

// dot product between row of s a and col of s b
for(int k = 0; k < TILE WIDTH; k++) ({
result += s_a[ty] [k] * s b[k][tx];

}

__syncthreads() ;

}

c[row*width+col] = result;

Use of Barriers in mat_mul
109
0 Two barriers per phase:
__syncthreads after all data is loaded into shared memory
__syncthreads after all data is read from shared memory

Second __ syncthreads in phase p guards
the load in phase p+1

0 Use barriers to guard data
Guard against using uninitialized data

Guard against corrupting live data

Matrix multiplication performance
TN

______ |original _lsharedmemory _____

Global loads 2N3 * 4 bytes (2N3 / TILE_WIDTH) * 4 bytes

Total ops 2N3

Al 0.25

Performance GTX 580
Memory bandwidth GTX 580
Al needed for peak

TILE_WIDTH required to
achieve peak

2N3
0.25 * TILE_WIDTH

1581 GFLOPs
192 GB/s
1581 /192 = 8.23

0.25 * TILE_WIDTH = 8.23,
TILE_WIDTH = 32.9

- CUDA: optimizing your application

1. Occupancy

2. Shared Memory
3. Coalescing

4. Streams

S

Shared Memory Bank Conflicts

Coalescing

112
traditional multi-core many-core GPU
optimal memory access pattern optimal memory access pattern

=0 —>» address 0 address 0

57 address 1 address 1

address 2 address 2

address 3 address 3

120 3l address 4 address 4

57 address 5 address 5

=0 3p!address 6 address 6

7 address 7 address 7

Consider the stride of your accesses

113
__global void foo(int* input, float3* input2) ({
int i = blockDim.x * blockIdx.x + threadIdx.x;

// Stride 1, OK!

int a = input[i];

// Stride 2, half the bandwidth is wasted
int b = input[2*i];

// Stride 3, 2/3 of the bandwidth wasted
float ¢ = input2[i] .x;

Example: Array of Structures (AoS)
RN

struct record {
int key;
int value;
int flag;
}s

record *d records;
cudaMalloc((void**) &d records, ...);

Example: Structure of Arrays (SoA)
s

Struct SoA {
int* keys;
int* values;
int* flags;

};

SoA d SoA data;
cudaMalloc((void**) &d SoA data.keys,
cudaMalloc ((void**) &d SoA data.values,
cudaMalloc((void**) &d SoA data.flags,

Example: SoA vs AoS
116 |
__global void kernel (record* AoS data,

SoA SoA data) {
int i = blockDim.x * blockIdx.x + threadIdx.x;

// AoS wastes bandwidth
int keyl = AoS datal[i] .key;

// SoA efficient use of bandwidth
int key2 = SoA data.keys[i];

117

Memory Coalescing

0 Structure of arrays is often better than array of
structures

0 Very clear win on regular, stride 1 access patterns

0 Unpredictable or irregular access patterns are
case-by-case

1 Can lose a factor of 10x — 30x!

CUDA: Streams

1. Occupancy

2. Shared Memory
3. Coalescing

4. Streams

5. Shared Memory Bank Conflicts

What are streams?
e

0 Stream = a sequence of operations that execute on
the device in the order in which they are issued by
the host code.

0 Same stream: In-Order execution

1 Different streams: Out-of-Order execution

0 Default stream = Synchronizing stream

No operation in the default stream can begin until all
previously issued operations in any stream on the device have
completed.

An operation in the default stream must complete before any
other operation in any stream on the device can begin.

Default stream: example
o

cudaMemcpy(d a, a, numBytes,cudaMemcpyHostToDevice);
increment<<<1l,N>>>(d a);

CpuFunction(b);
cudaMemcpy(a, d a, numBytes,cudaMemcpyDeviceToHost);

All operations happen in the same stream
Device (GPU)

B Synchronous execution
all operations execute (in order), one after the previous has finished

® Unaware of CpuFunction()

Host (CPU)

® Launches increment and regains control

® *May* execute CpuFunction *before* increment has finished

® Final copy starts *after® both increment and CpuFunction()
have finished

Non-default streams
S

0 Enable asynchronous execution and overlaps

Require special creation/deletion of streams
m cudaStreamCreate (&)
B cudaStreamDestroy ()

Special memory operations

m cudaMemcpyAsync (deviceMem, hostMem, size,
cudaMemcpyHostToDevice,)

Special kernel parameter (the 4™ one)
®m increment<<<l, N, 0, streaml>>>(d a)
0 Synchronization

All streams
m cudaDeviceSynchronize ()

Specific stream:

® cudaStreamSyncrhonize(stream1)

Computation vs. communication
N

//Single stream, numBytes = 16M, numElements = 4M
cudaMemcpy(d _a, a, numBytes, cudaMemcpyHostToDevice);
kernel<<blocks,threads>>(d a, firstElement);
cudaMemcpy(a, d a, numBytes, cudaMemcpyDeviceToHost);

C1060 (pre-Fermi): 12.9ms

Copy Engine
Kernel Engine

C2050 (Fermi): 9.9ms

H2D Engine
Kernel Engine
D2H Engine

Computation-communication overlap[1]*
iz |

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&d a[offset], &a[offset], streamBytes,
)i
kernel<<blocks, threads, 0, >>(d _a, offset);
cudaMemcpyAsync (&a[offset], &d a[offset], streamBytes,

) 7

C1060 (pre-Fermi): 13.63 ms (worse than sequential)

Copy Engine H2D - | D2H- | | H2D - 2 D2H-2 | H2D -3 D2H-3 | H2D - 4 D2H - 4
Kernel Engine | 2 3 4
C2050 (Fermi): 5.73 ms (better than sequential)
H2D Engine | 2 3 4
Kernel Engine J n 4
D2H Engine | 2 3 4

https:/ /github.com /parallel-forall /code-samples/blob /master /series /cuda-cpp /overlap-data-transfers /async.cu

Computation-communication overlap[2]*

for (int i =
for (int i

for (int 1 = 0;

0; 1 < nStreams; ++i) offset[i]=i * streamSize;
0; i < nStreams; ++1i)
cudaMemcpyAsync (&d _a[offset[1i]], &a[offset[i]], streamBytes,

cudaMemcpyHostToDevice,

1 < nStreams; ++1i)

kernel<<blocks,threads, 0,

for (int 1 = 0;
cudaMemcpyAsync (&a[offset],

cudaMemcpyDeviceToHost,

C1060 |

Copy Engine

Kernel Engine

1 < nStreams; ++1i)
&d a[offset],

)

>>(d _a, offset);

)

H2D - |

H2D -2
|

H2D -3
2

H2D - 4
3

D2H - |
4

D2H -2

D2H -3

D2H - 4

streamBytes,

ore-Fermi): 8.84 ms (better than sequential)

C2050 (Fermi): 7.59 ms (better than sequential, worse than v1)

H2D Engine
Kernel Engine

D2H Engine

2
|

3
2

4
3

2

3

4

http://devblogs.nvidia.com/parallelforall /how-overlap-data-transfers-cuda-cc/

n CUDA: optimizing your application

1. Occupancy

2. Shared Memory
3. Coalescing

4. Streams

5.

Shared Memory Bank Conflicts

Shared Memory Banks

0 Shared memory is banked
Only matters for threads within a warp

Full performance with some restrictions

®m Threads can each access different banks

® Or can all access the same value
1 Consecutive words are in different banks

0 If two or more threads access the same bank but
different value, we get bank conflicts

Bank Addressing Examples: OK

Thread 15

No Bank Conflicts

Thread O

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

v v v v v v \ 4 v

v

Bank O
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

Bank 15

= No Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

%

o~

v

Bank O
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

Bank 15

Bank Addressing Examples: BAD

= 2-way Bank Conflicts = 8-way Bank Conflicts
I eal @ Bank O Thread 0 X8, Bank 0
Thread 1 Bank 1 Thread 1 Bank 1
Thread 2 Bank 2 Thread 2 Bank 2
Thread 3 Bank 3 Thread 3 .
Thread 4 Bank 4 Thread 4 °
: Bank 5 Thread 5 Bank 7
° Bank 6 Thread 6 Bank 8
Bank 7 Thread 7
Thread 8 om‘ rec: x8 ch‘k 9
Thread @ ® ® °
[) (()
Thread 10

Thread 11 Bank 15 Thread 15 Bank 15

Trick to Assess Performance Impact
o

0 Change all shared memory reads to the same value
0 All broadcasts = no conflicts

0 Will show how much performance could be
improved by eliminating bank conflicts

0 The same doesn’t work for shared memory writes
So, replace shared memory array indices with

threadIdx.x

(Could also be done for the reads)

- OpenCL:
Programming GPUs, CPUs, APUs

Portability
s

0 Inter-family vs inter-vendor
NVIDIA Cuda runs on all NVIDIA GPU families
OpenCL runs on all GPUs, Cell, CPUs

0 Parallelism portability
Different architecture requires different granularity
Task vs data parallel

01 Performance portability

Can we express platform-specific optimizations?

The Khronos group
I

/

Weodephy CREATIVE oyply o m digia E oMY Eentants @ DRLITITT

206 TAL AMA

ity Google covninemeer pangre @wens of.. [bln] _@1 HUONE TBR{ [rof ITETECH.

AMDI1 ARM S ERICSSON 2 - “freescale-
. Apple te K H R\)Nc.oous, Q NOKIA @
E Over 100 companies creating

visual computing standards 03@”2
w (3E] Imagination Board of Promoters QUAI.CDMM ms"lﬂ%xasm

Mstar Jircocipe wagy Movidius @ Gros NEC QA ol "Els 0N2 S)Openye \90"“ o packetvideo

softw.

EEEEEY

,..39

” 0% SwmiMiow g = SoftBank _ 6 ﬁ SYMBIAN cAvumi 7Terecrups ~~TSS_ EOETE Silicon

TOSHIBA .~ Q O e _ Bl Viks | vmwaoe & e 9" T o

YAMAHA

OpenCL: Open Compute Language
EER

01 Architecture independent
0 Explicit support for many-cores

1 Low-level host API

Uses C library, no language extensions

0 Separate high-level kernel language

Explicit support for vectorization
01 Run-time compilation

01 Architecture-dependent optimizations
Still needed

Possible

Cuda vs OpenCL Terminology
RN

Thread block Work group

Constant memory Constant memory

Local memory Private memory

Cuda vs OpenCL Qualifiers

Functions

__device (no qualifier needed)

Variables

__device __global

Cuda vs OpenCL Indexing
T

blockDim get _local_size()

threadldx get local _id()

Calculate manually get global size()

__syncthreads () — barrier()

Vector add: Cuda vs OpenCL kernel

__global void CUDA
vectorAdd (float* a, float* b, float* c) {
int index = blockIdx.x * blockDim.x + threadIlIdx.x;
c[index] = a[index] + b[index];

__kernel void
vectorAdd(global float* a, (global float* b,
__global float* c) {

int index = get global id(0);

c[index] = a[index] + b[index];

} OpenCL

OpenCL VectorAdd host code (1)
iss

const size t workGroupSize = 256;
const size t nrWorkGroups = 3;

const size t totalSize = nrWorkGroups * workGroupSize;

cl platform id platform;
clGetPlatformIDs (1, &platform, NULL) ;

// create properties list of key/values, O-terminated.
cl context properties props[] = {
CL CONTEXT PLATFORM, (cl context properties)platform,
0

};

cl context context = clCreateContextFromType (props,
CL_DEVICE TYPE GPU, 0, 0, 0);

OpenCL VectorAdd host code (2)
s

cl_device_id device;
clGetDevicelIDs (platform, CL DEVICE TYPE DEFAULT, 1,
&device, NULL) ;

// create command queue on lst device the context reported
cl command queue commandQueue =

clCreateCommandQueue (context, device, 0, 0);

// create & compile program
cl program program = clCreateProgramWithSource (context, 1,
&programSource, 0, 0);

clBuildProgram(program, 0, 0, 0, 0, 0);

// create kernel
cl kernel kernel = clCreateKernel (program, "vectorAdd",O0);

OpenCL VectorAdd host code (3)
o

float* A, B, C = new float[totalSize]; // alloc host vecs

// initialize host memory here...

// allocate device memory

cl mem deviceA = clCreateBuffer (context,
CL MEM READ ONLY | CL MEM COPY HOST PTR,
totalSize * sizeof(cl float), A, 0);

cl mem deviceB = clCreateBuffer (context,
CL MEM READ ONLY | CL_MEM COPY HOST PTR,
totalSize * sizeof(cl float), B, 0);

cl mem deviceC = clCreateBuffer (context,
CL MEM WRITE ONLY, totalSize * sizeof(cl float), 0, 0);

OpenCL VectorAdd host code (4)
o]

// setup parameter values
clSetKernelArg(kernel, 0, sizeof(cl mem), &deviceAd);
clSetKernelArg(kernel, 1, sizeof(cl mem), &deviceB);

clSetKernelArg(kernel, 2, sizeof(cl mem), &deviceC);

clEnqueueNDRangeKernel (commandQueue, kernel, 1, O,

&totalSize, &workGroupSize, 0,0,0); // execute kernel

// copy results from device back to host, blocking
clEnqueueReadBuffer (commandQueue, deviceC, CL TRUE, O,
totalSize * sizeof(cl float), C, 0, 0, 0);

delete[] A, B, C; // cleanup
clReleaseMemObject (deviceA) ; clReleaseMemObject (deviceB) ;
clReleaseMemObject (deviceC) ;

n Summary and Conclusions

Summary and conclusions

0 Higher performance cannot be reached by
increasing clock frequencies anymore

0 Solution: introduction of large-scale parallelism

0 Multiple cores on a chip

Today:
m Up to 48 CPU cores in a node
m Up to 3200 compute elements on a single GPU

Host system can contain multiple GPUs: 10,000+ cores

We can build clusters of these nodes!

0 Future: 100,000s — millions of cores?

Summary and conclusions
R

0 Many different types of many-core hardware

0 Very different properties
Performance
Programmability
Portability

0 It's all about the memory

01 Choose the right platform for your application
Arithmetic intensity / Operational intensity

Roofline model

Open questions
s

0 New application domains — e.g., signal processing,
graph processing.
Perfomrance analysis
Peformance prediction
Modeling
1 Memory patterns understanding, description,
detection, automatic improvement

Local memory usage

1 Heterogeneous computing
Using both the host and the device

0 Application-device fitting

Questions?
e

0 Slides are /will be available

0 If you are interested in working with us on using
GPUs for new applications, let us know!

A.LVarbanescu@uva.nl

Backup slides
I

Example: Work queue
s

// For algorithms where the amount of work per item
// is highly non-uniform, it often makes sense to

// continuously grab work from a queue.

__global
void workg(int* work g, int* gq counter,
int queue max, int* output)

int 1 = threadIdx.x + blockDim.x * blockIdx.x;
int g index = atomicInc (g _counter, queue max);
int result = do work(work g[gq index]);
output[q index] = result;

Using shared memory

149 |
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]

__global void adj diff naive(int *result, int *input) {

// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadlIdx.x;

if(i > 0) {
// each thread loads two elements from device memory

int x i = input[i];
int x i minus one = input[i-1];

result[i] = x i - x i minus one;

Using shared memory
s

/ djacent Difference application:
// QWute result[i] = input[i] - input[i-1]
qO
__global ‘b’d adj diff naive(int *result, int *input) {
// compute th(gsthread’s global index
unsigned int i =8b&ckD:Lm X * blockIdx.x + threadlIdx.x;
by
if(i > 0) {
// each thread loads two’Q%nts from device memory
int x i = input[i];
int x i minus one = input[i-1]; J’é

(o
| o "%,,
result[i] = x i - x i minus one; / ’
}

Using shared memory
s

/ djacent Difference application:
// Qgrpute result[i] = input[i] - input[i-1]
%
__global ‘b’d adj diff naive(int *result, int *input) {
// compute th(gsthread’s global index
unsigned int i =Qb&ckD:Lm X * blockIdx.x + threadlIdx.x;
by
if(i > 0) {
// each thread loads two’Q%nts from device memory
int x i = input[i];

int x i minus one = input[i-1]; }'6

(o
| o "%,,
result[i] = x i - x i minus one; / ’
}

} The next thread also reads input|i]

Using shared memory
sz

__global void adj diff(int *result, int *input) ({
unsigned int i1 = blockDim.x * blockIdx.x + threadIdx.x;

__shared int s data[BLOCK SIZE]; // shared, 1 elt / thread

// each thread reads 1 device memory elt, stores it in s data
s data[threadIdx.x] = input[i];

// avoid race condition: ensure all loads are complete

syncthreads () ;

if (threadIdx.x > 0) {
result[i] = s data[threadIdx.x] - s _data[threadIdx.x-1];

} else if(1 > 0) {
// I am thread 0 in this block: handle thread block boundary
result[i] = s _data[threadIdx.x] - input[i-1];

Using shared memory: coalescing
iss

__global void adj diff(int *result, int *input) ({
unsigned int i1 = blockDim.x * blockIdx.x + threadIdx.x;

shared int s data[BLOCK SIZE]; // shared, 1 elt / thread

// each thread reads 1 device memory elt, stores it in s data
s_data[threadIdx.x] = input[i]; // COALESCED ACCESS!

// avoid race condition: ensure all loads are complete

syncthreads () ;

if (threadIdx.x > 0) {
result[i] = s data[threadIdx.x] - s _data[threadIdx.x-1];

} else if(1 > 0) {
// I am thread 0 in this block: handle thread block boundary
result[i] = s _data[threadIdx.x] - input[i-1];

Backup slides
N

CPU vs GPU Chip

AMD Magny-Cours (6 cores) ATI 4870 (800 cores)

GDDR5:Memory Interface

5 U DR 0 H
- Texture
DK BRID Units
(J UK ®
i3 PCI Express'Bus Interface
2 billion transistors 1 billion transistors

346 mm? 256 mm?

RADEON

GRAPHICS

Latest generation ATI

157

1 Southern Islands

0 1 chip: HD 7970
2048 cores
264 GB/sec memory bandwidth

3.8 tflops single, 247 gflops double precision
Maximum power: 250 Watts
399 euros!

1 2 chips: HD 7990
4096 cores, 7.6 tflops

0 Comparison: entire 72-node DAS-4 VU cluster has
4.4 tflops

ATl 5870 architecture overview

o

s

Graphics Engine

o
3 WIS

:ln‘
i -
qanH

sayIe) 2NIX3] Tl
i
ol
\! a1
saieys eyeq [e207

u
-..

S
. -

l =]
3
sauisu

. .

Memory Controller Memory Controller Memory Controller Memory Controller

(0] 101 CI0] C10d

ATl 5870 SIMD engine

159
0 Each of the 20 SIMD engines has:

16 thread processors x 5 stream cores = 80 scalar stream processing units
20 * 16 * 5 = 1600 cores total

32KB Local Data Share

its own control logic and runs from a shared set of threads

a dedicated fetch unit with 8KB L1 cache

a 64KB global data share to communicate with other SIMD engines

Thread =55 =
Sequencer
Data Share [| |
—'mm

Sequencer — +— R ——
LRI DR NS T U US U LSS uiinlle—

Local

Ultra - Threaded
Dispatch Processor

ATl 5870 thread processor

e 2

Local
Data Share N_{ |
! mm

Il

| Ti"’ Hiu iiT! ‘m”d uu, riu‘” ‘-i‘”i e,
e e u“ “ nem| e e -.Hiu e

Local
Data Share ! 5
[l

\

Ultra - Threaded
Dispatch Processor

0 Each thread processor includes:

4 stream cores + 1 special function
stream core

general purpose registers

0 FMA in a single clock

Thread s (e v (i el i et i
itte] ffiee] 18] VS Wil U1e] 18] 118
PR 4] A4 A4S ae) W4 ee

Stream Cores

4 32-bit FP MAD per clock
2 64-bit FP MUL or ADD per clock ~ Special functions
1 64-bit FP MAD per clock 132-bit FP MAD
4 24-bit Int MUL or ADD per clock -

IIIIIIIIIIII-IIIIIII

ATl 5870 Memory Hierarchy

00 EDC (Error Detection Code)

CRC Checks on Data Transfers for Improved Reliability
at High Clock Speeds

1 Bandwidths

Up to 1 TB/sec L1 texture fetch bandwidth
Up to 435 GB/sec between L1 & L2
153.6 GB/s to device memory

PCl-e 2.0, 16x: 8GB/s to main memory

162

Non -unified Address Space

A

*p _local

+

*p _shared

Device

0]

*p _device

Unified Address Space

f

AVeleo

32 - bit

Device

40 - bit

Y

AO

A Common Programming Strategy
T

0 Partition data into subsets that fit into shared
memory

A Common Programming Strategy
S

0 Handle each data subset with one thread block

A Common Programming Strategy
T

0 Load the subset from device memory to shared
memory, using multiple threads to exploit memory-
level parallelism

A Common Programming Strategy
e

00 Perform the computation on the subset from shared
memory

A Common Programming Strategy
T

0 Copy the result from shared memory back to device
memory

