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Graphics in 1980 
2 



Graphics in 2000 
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Graphics in 2015  
4 



GPUs in movies 
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¨  From Ariel in Little Mermaid to Brave  



So …  
6 

¨  GPUs are a steady market  
¤ Gaming  
¤ CAD-like activities  

n Traditional or not …  

¤ Visualisation  
n Scientific or not … 

¨  GPUs are increasingly used for other types of 
applications  
¤ Number crunching in science, finance, image processing 
¤  (fast) Memory operations in big data processing  



Another GPGPU history 
7 

Should we use GPUs for all applications?!  



TODO List 
8 

 
1.  Briefly on performance   
2.  GPGPUs  
3.  CUDA 
4.  If (time_left && vote)  

      advanced CUDA 
  else  
      talk more about performance  

 



Performance [1]  

¨  Latency/delay 
¤ The time for one operation (instruction) to finish, L  
¤ To improve: minimize L  

n  Lower is better 

¨  Throughput  
¤ The number of operations (instructions) per time unit, T 
¤ To improve: maximize T 

n Higher is better 
n Thus, time per instruction decreases, on average  

¨  Example: 1 man builds a house in 10 days. 
¤ Latency improvement: … 
¤ Throughput improvement: …  
 



Performance [2]  

¨  How do we get faster computers? 
¤ Faster processors and memory 

n  Increase clock frequency à latency boost  

¤ Better memory techniques 
n Use memory hierarchies à latency boost 
n More memory closer to processor à latency boost 

¤ Better processing techniques  
n Use pipelining à throughput boost  

¤ More processing units (cores, threads, …) 
n Use parallelism/concurrency à throughput boost (only?)  

¤ Accelerators  
n Use specialized functional units à latency+throughput boost  



Multi-cores = processors with multiple, 
homogeneous cores 
Many-cores = GPUs & alikes  

Why multi- and many-cores? -1 



Moore’s Law 

¤ Gordon Moore (co-founder of Intel) predicted in 1965 
that the transistor density of semiconductor chips would 
double roughly every 18 months. 

“The complexity for minimum component costs has increased at a rate of 
roughly a factor of two per year ... Certainly over the short term this rate can 
be expected to continue, if not to increase....” Electronics Magazine 1965 
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Transistor Counts 
13 



Traditionally …  
14 

¨  More transistors = more functionality  
¨  Improved technology = faster clocks = more speed 

¨  Thus, every 18 months, we expect better and faster 
processors.  

¨  They were all sequential: they execute one 
operation per clock cycle.  



Revolution in Processors 

¨  Chip density is 
continuing to 
increase about 2x 
every 2 years 

¨  BUT 
¤ Clock speed is not 
¤ Performance per 

cycle is not  
¤ Power is not  

15 



New ways to use transistors 
16 

¨  Parallelism on-chip: multi-core processors  
¤  Transformed in many-core processors. 

¨  “Multicore revolution” 
¤  Every machine is a parallel machine. 
¤ Accelerators start playing an important role.  

n  Specialized 
n  Energy efficient 
n  Used on demand  

 
¨  Can all applications use this parallelism? 
¨  Can we program all these architectures efficiently? 

¤  Performance? Productivity?  



T12 

NV30 NV40 
G70 

G80 

GT200 

3GHz Dual 
Core P4 

3GHz Core2 
Duo 

3GHz Xeon 
Quad 

GPU vs. CPU performance 
17 

1 GFLOPs = 10^9 ops / second 



GPU vs. CPU performance  
18 

1 GB/s = 8 x10^9 bits / second 



Why do we use many-cores? 

¨  Performance 
¤ Large scale parallelism 

¨  Power Efficiency 
¤ Use transistors more efficiently 

¨  Price (GPUs) 
¤ Game market is huge, bigger than Hollywood 

n Gaming pays for our HPC needs! 

¤ Mass production, economy of scale 

¨  Prestige  
¤ Reach ExaFLOP by 2019/2022 … 

19 



GPUs = the hardware  
GPGPU = general purpose GPU  

 (typically related to software/programming) 

History 0 



GPGPU History 
21 

¨  Current generation: NVIDIA Kepler 
¤ 7.1B transistors 
¤ More cores, more parallelism, more performance  

1995 2000 2005 2010 

RIVA 128 
3M xtors 

GeForce® 256 
23M xtors 

GeForce FX 
125M xtors 

GeForce 8800 
681M xtors 

GeForce 3  
60M xtors 

“Fermi” 
3B xtors 



GPGPU @ NVIDIA  
22 



GPUs @ AMD 
23 



GPUs @ ARM 
24 



(NVIDIA) GPUs 
25 

¨  Architecture  
¤ Many (100s) slim cores 
¤  Sets of (32 or 192) cores grouped into “multiprocessors” 

with shared memory  
n  SM(X) = stream multiprocessors  

¤ Work as accelerators  

¨  Memory 
¤  Shared L2 cache 
¤  Per-core caches + shared caches 
¤ Off-chip global memory  

¨  Programming  
¤  Symmetric multi-threading  
¤ Hardware scheduler  



NVIDIA’s GPU Architecture 
26 



Parallelism  
27 

¨  Data parallelism (fine-grain)  
¤  Restricted forms of task parallelism possible with newest 

generation of NVIDIA GPUs 
¨  SIMT (Single Instruction Multiple Thread) execution 

¤ Many threads execute concurrently 
n  Same instruction 
n  Different data elements 
n  HW automatically handles divergence 

¤ Not same as SIMD because of multiple register sets, 
addresses, and flow paths*  

¨  Hardware multithreading 
¤ HW resource allocation & thread scheduling 

n  Excess of threads to hide latency 
n  Context switching is (basically) free 

*http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html 



Integration into host system 
28 

¨  Typically PCI Express 2.0 
¨  Theoretical speed 8 GB/s 

¤ Effective ≤ 6 GB/s 
¤  In reality: 4 – 6 GB/s 

¨  V3.0 recently available 
¤ Double bandwidth 
¤ Less protocol overhead 



CPU vs. GPU 
29 

Control 

ALU ALU 

ALU ALU 

Cache 

CPU 

GPU 



Why so different?  

¨  Different goals produce different designs! 
¤ CPU must be good at everything 
¤ GPUs focus on massive parallelism  

n  Less flexible, more specialized  

¨  CPU: minimize latency experienced by 1 thread 
¤ big on-chip caches 
¤  sophisticated control logic 

¨  GPU: maximize throughput of all threads 
¤ # threads in flight limited by resources => lots of 

resources (registers, etc.) 
¤ multithreading can hide latency => no big caches 
¤  share control logic across many threads 

30 



CPU vs. GPU 
31 

¨  Movie 
¨  The Mythbusters 

¤ Jamie Hyneman & Adam Savage 
¤ Discovery Channel 

¨  Appearance at NVIDIA’s NVISION 2008 



GPU Hardware: NVIDIA 32 
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¨  Consumer: GTX 480, 580 
¨  HPC: Tesla C2050 

¤ More memory, ECC 
¤  1.0 Tlop SP 
¤  515 GFlop SP 

¨  16 streaming 
multiprocessors (SM) 
¤ GTX 580: 16 
¤ GTX 480: 15 
¤ C2050: 14 

¨  SMs are independent 
¨  768 KB L2 cache 
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Fermi Streaming Multiprocessor (SM) 
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¨  32 cores per SM  
(512 cores total) 

¨  64KB configurable  
L1 cache / shared memory 

¨  32,768 32-bit registers 



CUDA Core Architecture 
35 

¨  Decoupled floating point 
and integer data paths  

¨  Double precision throughput 
is 50% of single precision 

¨  Integer operations 
optimized for extended 
precision 
¤  64 bit and wider data 

element size  

¨  Predication field for all 
instructions 

¨  Fused-multiply-add 



Memory architecture (since Fermi) 
36 

¨  Configurable L1 cache per SM 
¤ 16KB L1 cache / 48KB Shared 
¤ 48KB L1 cache / 16KB Shared 

¨  Shared L2 cache 

Device memory 

L2 cache 

Host memory 
PCI-e 
bus 

registers 

L1 cache /  
shared mem 

registers 

L1 cache /  
shared mem …. 



Kepler: the new SMX 

¨  Consumer:  
¤ GTX680, GTX780, GTX-Titan 

¨  HPC  
¤ Tesla K10..K40 

¨  SMX features 
¤ 192 CUDA cores  

n 32 in Fermi 
¤ 32 Special Function Units (SFU) 

n 4 for Fermi  
¤ 32 Load/Store units (LD/ST)  

n 16 for Fermi  

¨  3x Perf/Watt improvement 

37 



A comparison 
38 



Maxwell: the newest SMM 

¨  Consumer: 
¤ GTX 970, GTX 980, …  

¨  HPC: 
¤ ? 

¨  SMM Features: 
¤ 4 subblocks of 32 cores 
¤ Dedicated L1/LM per 64 cores  
¤ Dispatch/ecode/registers per 

32 cores 
¨  L2 cache: 2MB (~3x vs. Kepler) 
¨  40 texture units  
¨  Lower power consumption 

39 



Programming many-cores 40 



Parallelism 
41 

¨  Threads 
¤  Independent units of computation 
¤ Expected to execute in parallel  
¤ Write once, instantiate many times  

¨  Concurrent execution  
¤ Threads execute in the same time if there are sufficient 

resources 
¨  Assume a processor P with 10 cores and an 

application A with: 
¤ 10 threads: how long does A take?  
¤ 20 threads: how long does A take? 
¤ 33 threads: how long does A take?  
 



Parallelism 
42 

¨  Synchronization = a thread’s execution must depend 
on other threads  
¤ Barrier = all threads wait to get to barrier before they 

continue 
¤ Shared variables = more threads RD/WR them  

n  Locks = threads can use locks to protect the WR sections   
¤ Atomic operation = operation completed by a single 

thread at a time 
¨  Thread scheduling = the order in which the threads 

are executed on the machine 
¤ User-based: programmer decides  
¤ OS-based: OS decides (e.g., Linux, Windows)  
¤ Hardware-based: hardware decides (e.g., GPUs)  



Programming many-cores  
43 

= parallel programming:  
¤ Choose/design algorithm  
¤ Parallelize algorithm  

n Expose enough layers of parallelism  
n Minimize communication, synchronization, dependencies  
n Overlap computation and communication 

¤  Implement parallel algorithm 
n Choose parallel programming model  
n  (?) Choose many-core platform 

¤ Tune/optimize application  
n Understand performance bottlenecks & expectations  
n Apply platform specific optimizations  
n  (?) Apply application & data specific optimizations   



Programming GPUs in CUDA  44 



CUDA 
45 

¨  CUDA: Scalable parallel programming 
¤ C/C++ extensions 

n Other wrappers exist  

¨  Straightforward mapping onto hardware 
¤ Hierarchy of threads (to map to cores)  

n Configurable at logical level  

¤ Various memory spaces (to map to physical spaces) 
n Usable via variable scopes  

¨  Scale to 1000s of cores & 100,000s of threads 
¤ GPU threads are lightweight 
¤ GPUs need 1000s of threads for full utilization 



CUDA Model of Parallelism 

¨  CUDA virtualizes the physical hardware 
¤ A block is a virtualized streaming multiprocessor 

n  threads, shared memory 

¤ A thread is a virtualized scalar processor  
n  registers, PC, state 

¨  Threads are scheduled onto physical hardware 
without pre-emption 
¤  threads/blocks launch & run to completion 
¤ blocks must be independent 

46 



47 

CUDA Model of Parallelism 



Hierarchy of threads 
48 

Thread 

Block 

Grid 



Using CUDA 
49 

¨  Two parts of the code: 
¤ Device code = GPU code = kernel(s) 

n Sequential program  
n Write for 1 thread, execute for all 

¤ Host code = CPU code  
n  Instantiate grid + run the kernel 
n Memory allocation, management, deallocation 
n C/C++/Java/Python/… 

¨  Host-device communication  
¤ Explicit / implicit via PCI/e  
¤ Minimum: data input/output  



Processing flow 
50 

Image courtesy of Wikipedia 

Kernel  
runs here 

All this happens from  
the host code.  



Grids, Thread Blocks and Threads 

Grid 
Thread Block 0, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 



Grid 
Thread Block 0, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Kernels and grids 
52 

¨  Launch kernel (12 x 6 = 72 instances)  
myKernel<<<numBlocks,threadsPerBlock>>>(…);

¤  dim3 threadsPerBlock(3,4);
n  threadsPerBlock.x = 3
n  threadsPerBlock.y = 4  
n  Each thread: 
(threadIdx.x, threadIdx.y)

¤  dim3 numBlocks(2,3);
n  blockDim.x = 2
n  blockDim.y=3
n  Each block : 
(blockIdx.x,blockIdx.y)



Thread 

Per-thread 
Local Memory 

SM 

Per-SM 
Shared 
Memory 

Kernel 0 

Multiple Device Memory Scopes 
53 

¨  Per-thread private 
memory 
¤ Each thread has its own 

local memory 
¤ Stacks, other private 

data, registers 

¨  Per-SM shared memory 
¤ Small memory close to the 

processor, low latency 
¨  Device memory 

¤ GPU frame buffer 
¤ Can be accessed by any 

thread in any SM 

Kernel 1 
Per-device 

Global 
Memory 

… 

… 



Memory Spaces in CUDA 

Grid 

Device Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

 Host 

Constant Memory 

54 

Private 
data 

Shared data  
(per block) 

Global data  

Texture Memory 



Device Memory 
55 

¨  CPU and GPU have separate memory spaces 
¤ Data is moved across PCI-e bus 
¤ Use functions to allocate/set/copy memory on GPU 
¤ Very similar to corresponding C functions 

¨  Pointers are just addresses 
¤ Can’t tell from the pointer value whether the address is 

on CPU or GPU 
¤ Must exercise care when dereferencing: 

n Dereferencing CPU pointer on GPU will likely crash 
n Same for vice versa 



Additional memories 

¨  Textures 
¤ Read-only 
¤ Data resides in device memory 
¤ Different read path, includes specialized caches 

¨  Constant memory 
¤ Data resides in device memory 
¤ Manually managed 
¤ Small (e.g., 64KB) 
¤ Assumes all threads in a block read the same addresses 

n Serializes otherwise 



C for CUDA 
57 

¨  Philosophy: provide minimal set of extensions necessary 

¨  Function qualifiers: 
__global__ void my_kernel() { } 
__device__ float my_device_func() { } 

¨  Execution configuration: 
dim3 gridDim(100, 50);  // 5000 thread blocks 
dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M total) 
my_kernel <<< gridDim, blockDim >>> (...); // Launch kernel 

¨  Built-in variables and functions valid in device code: 
dim3 gridDim;   // Grid   dimension 
dim3 blockDim;  // Block  dimension 
dim3 blockIdx;  // Block  index 
dim3 threadIdx; // Thread index 

 
void syncthreads(); // Thread synchronization 



Our first CUDA program 58 



First CUDA program 

¨  Determine mapping of operations and data to threads 
¨  Write kernel(s)  

¤  Sequential code  
¤ Written per-thread  

¨  Determine block geometry  
¤  Threads per block, blocks per grid  
¤ Number of grids (>= number of kernels) 

¨  Write host code  
¤ Memory initialization and copying to device  
¤  Kernel(s) launch(es)  
¤  Results copying to host   

¨  Optimize the kernels  

59 



Vector add: sequential 
60 

 

 

 

 

 

void vector_add(int size, float* a, float* b, float* c) { 

    for(int i=0; i<size; i++) { 

        c[i] = a[i] + b[i];   

    } 

} 



How do we parallelize this?  
61 

¨  What does each thread compute? 
¤ One addition per thread  
¤ Each thread deals with *different* elements  
¤ How do we know which element? 

n Compute a mapping of the grid to the data 
n  Any mapping will do!  

 



Processing flow 
62 

Image courtesy of Wikipedia 

Kernel  
runs here 

All this happens from  
the host code.  



// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) { 

    int i = ? 

    C[i] = A[i] + B[i]; 

} 

 

Vector add: Kernel 



Calculating the global thread index 
64 

¨  “global” thread index: 
 blockDim.x * blockIdx.x + threadIdx.x; 

 

  

Grid 
Thread Block 0 

0 1 2 3 
Thread Block 1 

0 1 2 3 
Thread Block 2 

0 1 2 3 

blockDim.X 



65 

Grid 
Thread Block 0 

0 1 2 3 
Thread Block 1 

0 1 2 3 
Thread Block 2 

0 1 2 3 

blockDim.X 

Calculating the global thread index 
65 

¨  “global” thread index: 
 blockDim.x * blockIdx.x + threadIdx.x; 

 

     4      *     2      +     1    = 9 



// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) { 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    C[i] = A[i] + B[i]; 

} 

 

Vector add: Kernel 

Done with the kernel!  



Processing flow 
67 

Image courtesy of Wikipedia 

Kernel  
runs here 

All this happens from  
the host code.  



Vector add: Launch kernel 
68 

// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) { 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    C[i] = A[i] + B[i]; 

} 

 

int main() { 

  // initialization code here ... 

 N = 5120; 

  // launch N/256 blocks of 256 threads each 

  vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC); 

  // cleanup code here ... 

} 

GPU code 

Host code 

(can be in the same file) 



69 

// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) { 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    C[i] = A[i] + B[i]; 

} 

 

 

 

int main() { 

  // initialization code here ... 

 N = 5000; 

  // launch N/256 blocks of 256 threads each 

  vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC); 

  // cleanup code here ... 

} 

GPU code 

Host code 

(can be in the same file) 

What if N = 5000?  

Vector add: Launch kernel 



70 

// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) { 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

   if (i<N) C[i] = A[i] + B[i]; 

} 

 

 

 

int main() { 

  // initialization code here ... 

 N = 5000; 

  // launch N/256 blocks of 256 threads each 

  vector_add<<< N/256+1,256 >>>(deviceA, deviceB, 
deviceC); 

  // cleanup code here ... 

} 

GPU code 

Host code 

(can be in the same file) 

What if N = 5000?  

Vector add: Launch kernel 



Memory Allocation / Release 
71 

¨  Host (CPU) manages device (GPU) memory: 
¤  cudaMalloc(void **pointer, size_t nbytes) 
¤  cudaMemset(void *pointer, int val, size_t count) 
¤  cudaFree(void* pointer) 

int n = 1024; 
int nbytes = n * sizeof(int); 
int* data = 0; 
cudaMalloc(&data, nbytes); 
cudaMemset(data, 0, nbytes); 
cudaFree(data); 



Data Copies 
72 

¨  cudaMemcpy(void *dst, void *src, 
     size_t nbytes, 
     enum cudaMemcpyKind direction); 

¤  returns after the copy is complete 
¤  blocks CPU thread until all bytes have been copied 
¤  doesn’t start copying until previous CUDA calls complete 

¨  enum cudaMemcpyKind 
¤ cudaMemcpyHostToDevice 
¤ cudaMemcpyDeviceToHost 
¤ cudaMemcpyDeviceToDevice 

¨  Non-blocking copies are also available 
¤ DMA transfers, overlap computation and communication 
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int main(int argc, char** argv) { 

  float *hostA, *deviceA, *hostB, *deviceB, *hostC, *deviceC; 

  int size = N * sizeof(float); 

 

  // allocate host memory 

  hostA = malloc(size); 

  hostB = malloc(size); 

  hostC = malloc(size); 

 

  // initialize A, B arrays here... 

 

  // allocate device memory 

  cudaMalloc(&deviceA, size); 

  cudaMalloc(&deviceB, size); 

  cudaMalloc(&deviceC, size); 

Vector add: Host 
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 // transfer the data from the host to the device 
 cudaMemcpy(deviceA, hostA, size, cudaMemcpyHostToDevice); 

 cudaMemcpy(deviceB, hostB, size, cudaMemcpyHostToDevice); 
 

 // launch N/256 blocks of 256 threads each 
 vector_add<<<N/256, 256>>>(deviceA, deviceB, deviceC); 

 
 // transfer the result back from the GPU to the host 

 cudaMemcpy(hostC, deviceC, size, cudaMemcpyDeviceToHost); 

} 

Vector add: Host 

Done with the host code!  



Summary 

¨  Determine mapping of operations and data to threads 
¨  Write kernel(s)  

¤  Sequential code  
¤ Written per-thread  

¨  Determine block geometry  
¤  Threads per block, blocks per grid  
¤ Number of grids (>= number of kernels) 

¨  Write host code  
¤ Memory initialization and copying to device  
¤  Kernel(s) launch(es)  
¤  Results copying to host   

¨  Optimize the kernels  
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Practice ? 
76 

¨  Let’s try this in practice 

¨  Run on DAS4  
¨  You need an ssh client  

¤ On Linux/Mac: terminal will do  
¤ On Windows: download putty  

n http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html 

¨  Use vim to see the files  
¨  Follow the directions in the manual for Assignment 1 

and 2  



Practice [cont]   
77 

¨  Vim commands: 
¤  i – enables editing  
¤ Esc – finishes editing  
¤  :qw – exit and save changes  
¤  :q! – exit without saving changes  

¨  “make” – to compile  
 



Advanced CUDA 3 

Scheduling and synchronization 
 



Thread Scheduling 

¨  Order in which thread blocks are scheduled is 
undefined! 
¤ any possible interleaving of blocks should be valid 
¤ presumed to run to completion without preemption 
¤ can run in any order 
¤ can run concurrently OR sequentially 

¨  Order of threads within a block is also undefined! 
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Global synchronization 

¨  Q: How do we do global synchronization with these 
scheduling semantics? 
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Global synchronization 

¨  Q: How do we do global synchronization with these 
scheduling semantics? 

¨  A1: Not possible! 
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Global synchronization 

¨  Q: How do we do global synchronization with these 
scheduling semantics? 

¨  A1: Not possible! 
¨  A2: Finish a grid, and start a new one! 

82 



Global synchronization 

¨  Q: How do we do global synchronization with these 
scheduling semantics? 

¨  A1: Not possible! 
¨  A2: Finish a grid, and start a new one! 

step1<<<grid1,blk1>>>(...); 

// CUDA ensures that all writes from step1 are complete. 

step2<<<grid2,blk2>>>(...); 

¨  We don't have to copy the data back and forth! 
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Atomics 

¨  Guarantee that only a single thread has access to a 
piece of memory during an operation 
¤ No loss of data 
¤ Ordering is still arbitrary 

¨  Different types of atomic instructions 
¤ Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor 
¤ On device memory and/or shared memory 

¨  Much more expensive than load + operation + store 
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Example: Histogram 

// Determine frequency of colors in a picture. 
// Colors have already been converted into integers 
// between 0 and 255. 
// Each thread looks at one pixel, 
// and increments a counter 
 
__global__ void histogram(int* colors, int* buckets) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int c = colors[i]; 
    buckets[c] += 1; 
} 
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Example: Histogram 

// Determine frequency of colors in a picture. 
// Colors have already been converted into integers 
// between 0 and 255. 
// Each thread looks at one pixel, 
// and increments a counter 
 
__global__ void histogram(int* colors, int* buckets) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int c = colors[i]; 
    buckets[c] += 1; 
} 
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Example: Histogram 

// Determine frequency of colors in a picture. 
// Colors have already been converted into integers 
// between 0 and 255. 
// Each thread looks at one pixel, 
// and increments a counter atomically 
 
__global__ void histogram(int* colors, int* buckets) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int c = colors[i]; 
    atomicAdd(&buckets[c], 1); 
} 
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Thread Scheduling 

¨  SMs implement zero-overhead warp scheduling 
¤ A warp is a group of 32 threads that runs concurrently on an SM 
¤ At any time, the number of warps concurrently executed by an SM 

is limited by its number of cores.  
¤ Warps whose next instruction has its inputs ready for consumption 

are eligible for execution 
¤  Eligible Warps are selected for execution on a prioritized 

scheduling policy 
¤ All threads in a warp execute the same instruction when selected 

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4
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Stalling warps 

¨  What happens if all warps are stalled? 
¤ No instruction issued → performance lost 

¨  Most common reason for stalling? 
¤ Waiting on global memory 

¨  If your code reads global memory every couple of 
instructions 
¤ You should try to maximize occupancy 
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Occupancy 

¨  What determines occupancy? 
¨  Limited resources! 

¤ Register usage per thread 
¤ Shared memory per thread block 
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Resource Limits (1) 

¨  Pool of registers and shared memory per SM 
¤  Each thread block grabs registers & shared memory 
¤  If one or the other is fully utilized      no more thread blocks 

TB 0 

Registers Shared Memory 

TB 1 

TB 2 

TB 0 

TB 1 

TB 2 

TB 0 

Registers 

TB 1 
TB 0 

TB 1 

Shared Memory 
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Resource Limits (2) 

¨  Can only have P thread blocks per SM 
¤  If they’re too small, can’t fill up the SM 
¤ Need 128 threads / block on gt200 (4 cycles/instruction) 
¤ Need 192 threads / block on Fermi (6 cycles/instruction) 

¨  Higher occupancy has diminishing returns for hiding 
latency 
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Hiding Latency with more threads 
94 



How do you know what you’re using? 

¨  Use compiler flags to get register and shared 
memory usage 
¤ “nvcc -Xptxas –v”  

¨  Use the NVIDIA Profiler  
¨  Plug those numbers into CUDA Occupancy 

Calculator 

¨  Maximize occupancy for improved performance  
¤ Empirical rule! Don’t overuse!   
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Thread divergence 

¨  “I heard GPU branching is expensive. Is this true?”  

__global__ void Divergence(float* dst,float* src )
{
    float value = 0.0f;
 
    if ( threadIdx.x % 2 == 0 )
// active threads : 50% 
        value = src[0] + 5.0f;
    else
// active threads : 50% 
        value = src[0] – 5.0f;

    dst[index] = value;
}



Execution  
98 

Worst case performance loss:   
 50% compared with the non divergent case. 



Another example  
99 



Performance penalty?  
100 

¨  Depends on the amount of divergence  
¤ Worst case: 1/32 performance  

n When each thread does something different  

¨  Depends on whether branching is data- or ID- 
dependent  
¤  If ID – consider grouping threads differently   
¤  If data – consider sorting  

¨  Non-diverging warps => NO performance penalty 
¤  In this case, branches are not expensive …    
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Matrix multiplication example 
102 

¨  C = A * B  
¨  Each element C,i,j  
  = dot(row(A,i),col(B,j))  
¨  Parallelization strategy  

¤ Each thread computes element in C 
¤ 2D kernel 

B 

C A 



Matrix multiplication implementation 
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__global__ void mat_mul(float *a, float *b,  

                        float *c, int width)  

{  

  // calc row & column index of output element  

  int row = blockIdx.y*blockDim.y + threadIdx.y;  

  int col = blockIdx.x*blockDim.x + threadIdx.x; 

 
float result = 0;  
 

  // do dot product between row of a and column of b  

  for(int k = 0; k < width; k++) { 

      result += a[row*width+k] * b[k*width+col]; 
} 

  c[row*width+col] = result;  

}  

B

CA



Matrix multiplication performance 
104 

Loads per dot product term 2 (a and b)  = 8 bytes 
FLOPS 2 (multiply and add) 
AI 2 / 8 = 0.25 
Performance GTX 580 1581 GFLOPs 
Memory bandwidth GTX 580 192 GB/s 
Attainable performance 192 * 0.25 = 48 GFLOPS 
Maximum efficiency 3.0 % of theoretical peak 



Data reuse 
105 

¨  Each input element 
in A and B is read 
WIDTH times 

¨  Load elements into 
shared memory 

¨  Have several 
threads use local 
version to reduce 
the memory 
bandwidth  

B 

C A 

WIDTH 



Using shared memory 
106 

¨  Partition kernel loop into phases  
¨  In each thread block, load a tile 

of both matrices into shared 
memory each phase 

¨  Each phase, each thread 
computes a partial result 

TILE_WIDTH 

B 

A C 
1 

1 

3 

2 3 

2 



Matrix multiply with shared memory 
107 

__global__ void mat_mul(float *a, float *b,  
                      float *c, int width) { 

  // shorthand  
  int tx = threadIdx.x, ty = threadIdx.y; 
  int bx = blockIdx.x,  by = blockIdx.y; 
 

  // allocate tiles in shared memory  
  __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];  
  __shared__ float s_b[TILE_WIDTH][TILE_WIDTH]; 
 

  // calculate the row & column index  
  int row = by*blockDim.y + ty;  
  int col = bx*blockDim.x + tx; 
 
float result = 0;   



Matrix multiply with shared memory 
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  // loop over input tiles in phases 
  for(int p = 0; p < width/TILE_WIDTH; p++) { 
    // collaboratively load tiles into shared memory 
    s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)]; 
    s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col]; 
    __syncthreads(); 
 

    // dot product between row of s_a and col of s_b  
    for(int k = 0; k < TILE_WIDTH; k++) { 
      result += s_a[ty][k] * s_b[k][tx]; 
  } 

    __syncthreads();  
  } 
  

  c[row*width+col] = result;  
} 

B 

A C 
1 2 3 

1 

2 

3 



Use of Barriers in mat_mul 
109 

¨  Two barriers per phase:  
¤ __syncthreads after all data is loaded into shared memory  
¤ __syncthreads after all data is read from shared memory  
¤ Second __syncthreads in phase p guards  

the load in phase p+1  

¨  Use barriers to guard data  
¤ Guard against using uninitialized data  
¤ Guard against corrupting live data  



Matrix multiplication performance 
110 

Original shared memory 

Global loads 2N3 * 4 bytes (2N3 / TILE_WIDTH) * 4 bytes 

Total ops 2N3 2N3 

AI 0.25 0.25 * TILE_WIDTH 

Performance GTX 580 1581 GFLOPs 

Memory bandwidth GTX 580 192 GB/s 

AI needed for peak 1581 / 192 = 8.23 

TILE_WIDTH required to 
achieve peak 

0.25 * TILE_WIDTH = 8.23, 
TILE_WIDTH = 32.9 
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Coalescing 
112 



Consider the stride of your accesses 

__global__ void foo(int* input, float3* input2) { 

  int i = blockDim.x * blockIdx.x + threadIdx.x; 

 

  // Stride 1, OK! 

  int a = input[i]; 

 

  // Stride 2, half the bandwidth is wasted 

  int b = input[2*i]; 

 

  // Stride 3, 2/3 of the bandwidth wasted 

  float c = input2[i].x; 

} 

 

113 



Example: Array of Structures (AoS) 

struct record { 
    int key; 
    int value; 
    int flag; 
}; 
 
record *d_records; 
cudaMalloc((void**)&d_records, ...); 
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Example: Structure of Arrays (SoA) 

Struct SoA { 
    int* keys; 
    int* values; 
    int* flags; 
}; 
 
SoA d_SoA_data; 
cudaMalloc((void**)&d_SoA_data.keys, ...); 
cudaMalloc((void**)&d_SoA_data.values, ...); 
cudaMalloc((void**)&d_SoA_data.flags, ...); 
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Example: SoA vs AoS 

__global__ void kernel(record* AoS_data, 
                    SoA  SoA_data) { 
  int i = blockDim.x * blockIdx.x + threadIdx.x; 
 
  // AoS wastes bandwidth 
  int key1 = AoS_data[i].key; 
 
  // SoA efficient use of bandwidth 
  int key2 = SoA_data.keys[i]; 
} 
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Memory Coalescing 

¨  Structure of arrays is often better than array of 
structures 

¨  Very clear win on regular, stride 1 access patterns 
¨  Unpredictable or irregular access patterns are 

case-by-case 
¨  Can lose a factor of 10x – 30x! 

117 



CUDA: Streams 118 
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What are streams? 
119 

¨  Stream = a sequence of operations that execute on 
the device in the order in which they are issued by 
the host code.  

¨  Same stream: In-Order execution 
¨  Different streams: Out-of-Order execution 

¨  Default stream = Synchronizing stream 
¤ No operation in the default stream can begin until all 

previously issued operations in any stream on the device have 
completed.  

¤ An operation in the default stream must complete before any 
other operation in any stream on the device can begin. 



Default stream: example 
120 

 
¤ All operations happen in the same stream  
¤ Device (GPU) 

n  Synchronous execution 
n  all operations execute (in order), one after the previous has finished 

n  Unaware of CpuFunction()
¤ Host (CPU)  

n  Launches increment and regains control  
n  *May* execute CpuFunction *before* increment has finished 
n  Final copy starts *after* both increment and CpuFunction() 

have finished 

cudaMemcpy(d_a, a, numBytes,cudaMemcpyHostToDevice);
 increment<<<1,N>>>(d_a);
 CpuFunction(b);
cudaMemcpy(a, d_a, numBytes,cudaMemcpyDeviceToHost);
 



Non-default streams 
121 

¨  Enable asynchronous execution and overlaps 
¤ Require special creation/deletion of streams 

n  cudaStreamCreate(&stream1)
n  cudaStreamDestroy(stream1)

¤ Special memory operations 
n  cudaMemcpyAsync(deviceMem, hostMem, size,  

cudaMemcpyHostToDevice, stream1)

¤ Special kernel parameter (the 4th one) 
n  increment<<<1, N, 0, stream1>>>(d_a)

¨  Synchronization 
¤ All streams  

n  cudaDeviceSynchronize()

¤ Specific stream:  
n  cudaStreamSyncrhonize(stream1) 



Computation vs. communication 
122 

  //Single stream, numBytes = 16M, numElements = 4M
cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);  
kernel<<blocks,threads>>(d_a, firstElement);
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

C1060 (pre-Fermi): 12.9ms 

C2050 (Fermi):  9.9ms 



Computation-communication overlap[1]* 
123 

for (int i = 0; i < nStreams; ++i) {
  int offset = i * streamSize;
  cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes, 
stream[i]);
  kernel<<blocks,threads,0,stream[i]>>(d_a, offset);
  cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes, 
stream[i]);
}

C1060 (pre-Fermi): 13.63 ms (worse than sequential)   

C2050 (Fermi): 5.73 ms (better than sequential) 

https://github.com/parallel-forall/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu 



Computation-communication overlap[2]* 
124 

for (int i = 0; i < nStreams; ++i) offset[i]=i * streamSize;
for (int i = 0; i < nStreams; ++i)
    cudaMemcpyAsync(&d_a[offset[i]], &a[offset[i]], streamBytes, 

cudaMemcpyHostToDevice, stream[i]);

for (int i = 0; i < nStreams; ++i) 
kernel<<blocks,threads,0,stream[i]>>(d_a, offset);

for (int i = 0; i < nStreams; ++i) 
    cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes, 

cudaMemcpyDeviceToHost, stream[i]);

C1060 (pre-Fermi): 8.84 ms (better than sequential)  

C2050 (Fermi): 7.59 ms (better than sequential, worse than v1) 

http://devblogs.nvidia.com/parallelforall/how-overlap-data-transfers-cuda-cc/ 
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Shared Memory Banks 

¨  Shared memory is banked 
¤ Only matters for threads within a warp 
¤ Full performance with some restrictions 

n Threads can each access different banks 
n Or can all access the same value 

¨  Consecutive words are in different banks 
¨  If two or more threads access the same bank but 

different value, we get bank conflicts 
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Bank Addressing Examples: OK 

n  No Bank Conflicts n  No Bank Conflicts 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 
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Bank Addressing Examples: BAD 

n  2-way Bank Conflicts n  8-way Bank Conflicts 

Thread 11 
Thread 10 
Thread 9 
Thread 8 

Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 15 

Bank 7 
Bank 6 
Bank 5 
Bank 4 
Bank 3 
Bank 2 
Bank 1 
Bank 0 

Thread 15 

Thread 7 
Thread 6 
Thread 5 
Thread 4 
Thread 3 
Thread 2 
Thread 1 
Thread 0 

Bank 9 
Bank 8 

Bank 15 

Bank 7 

Bank 2 
Bank 1 
Bank 0 x8 

x8 
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Trick to Assess Performance Impact  

¨  Change all shared memory reads to the same value 
¨  All broadcasts = no conflicts 
¨  Will show how much performance could be 

improved by eliminating bank conflicts 

¨  The same doesn’t work for shared memory writes 
¤ So, replace shared memory array indices with 
  threadIdx.x 
¤  (Could also be done for the reads) 
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OpenCL: 
Programming GPUs, CPUs, APUs  

5 



Portability 

¨  Inter-family vs inter-vendor 
¤ NVIDIA Cuda runs on all NVIDIA GPU families 
¤ OpenCL runs on all GPUs, Cell, CPUs 

¨  Parallelism portability 
¤ Different architecture requires different granularity 
¤ Task vs data parallel 

¨  Performance portability 
¤ Can we express platform-specific optimizations? 
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The Khronos group 
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OpenCL: Open Compute Language 

¨  Architecture independent 
¨  Explicit support for many-cores 
¨  Low-level host API 

¤ Uses C library, no language extensions 

¨  Separate high-level kernel language 
¤ Explicit support for vectorization 

¨  Run-time compilation 
¨  Architecture-dependent optimizations 

¤ Still needed 
¤ Possible 
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Cuda vs OpenCL Terminology 

CUDA OpenCL 
Thread Work item 
Thread block Work group 
Device memory Global memory 
Constant memory Constant memory 
Shared memory Local memory 
Local memory Private memory 
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Cuda vs OpenCL Qualifiers 

CUDA OpenCL 
__constant__ __constant 
__device__ __global 
__shared__ __local 

CUDA OpenCL 
__global__ __kernel 
__device__ (no qualifier needed) 

Functions 

Variables 
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Cuda vs OpenCL Indexing 

CUDA OpenCL 
gridDim get_num_groups() 
blockDim get_local_size() 
blockIdx get_group_id() 
threadIdx get_local_id() 
Calculate manually get_global_id() 
Calculate manually get_global_size() 

__syncthreads() → barrier() 

136 



Vector add: Cuda vs OpenCL kernel 

__global__ void  
vectorAdd(float* a, float* b, float* c) { 
  int index = blockIdx.x * blockDim.x + threadIdx.x; 
  c[index] = a[index] + b[index]; 
} 
 
__kernel void  
vectorAdd(__global float* a, __global float* b, 
          __global float* c) { 
    int index = get_global_id(0); 
    c[index] = a[index] + b[index]; 
} 

CUDA 

OpenCL 
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OpenCL VectorAdd host code (1) 

const size_t workGroupSize = 256; 
const size_t nrWorkGroups = 3; 

const size_t totalSize = nrWorkGroups * workGroupSize; 
 

cl_platform_id platform; 
clGetPlatformIDs(1, &platform, NULL); 

   
// create properties list of key/values, 0-terminated. 

cl_context_properties props[] = { 

  CL_CONTEXT_PLATFORM, (cl_context_properties)platform,  
  0 

}; 
   

cl_context context = clCreateContextFromType(props, 
CL_DEVICE_TYPE_GPU, 0, 0, 0); 
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OpenCL VectorAdd host code (2) 

cl_device_id device; 
clGetDeviceIDs(platform, CL_DEVICE_TYPE_DEFAULT, 1,  

               &device, NULL); 
 

// create command queue on 1st device the context reported 
cl_command_queue commandQueue =  

    clCreateCommandQueue(context, device, 0, 0); 
 

// create & compile program 

cl_program program = clCreateProgramWithSource(context, 1,  
    &programSource, 0, 0); 

clBuildProgram(program, 0, 0, 0, 0, 0); 
 

// create kernel 
cl_kernel kernel = clCreateKernel(program, "vectorAdd",0); 
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OpenCL VectorAdd host code (3) 

float* A, B, C = new float[totalSize]; // alloc host vecs 
// initialize host memory here... 

 
// allocate device memory 

cl_mem deviceA = clCreateBuffer(context, 
  CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,      

  totalSize * sizeof(cl_float), A, 0); 
 

cl_mem deviceB = clCreateBuffer(context, 

  CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,      
  totalSize * sizeof(cl_float), B, 0); 

 
cl_mem deviceC = clCreateBuffer(context,  

  CL_MEM_WRITE_ONLY, totalSize * sizeof(cl_float), 0, 0); 
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OpenCL VectorAdd host code (4) 

// setup parameter values 
clSetKernelArg(kernel, 0, sizeof(cl_mem), &deviceA); 

clSetKernelArg(kernel, 1, sizeof(cl_mem), &deviceB); 
clSetKernelArg(kernel, 2, sizeof(cl_mem), &deviceC); 

 
clEnqueueNDRangeKernel(commandQueue, kernel, 1, 0, 

  &totalSize, &workGroupSize, 0,0,0); // execute kernel 
 

// copy results from device back to host, blocking 

clEnqueueReadBuffer(commandQueue, deviceC, CL_TRUE, 0,  
  totalSize * sizeof(cl_float), C, 0, 0, 0); 

 
delete[] A, B, C; // cleanup 

clReleaseMemObject(deviceA); clReleaseMemObject(deviceB); 
clReleaseMemObject(deviceC); 
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Summary and conclusions 

¨  Higher performance cannot be reached by 
increasing clock frequencies anymore 

¨  Solution: introduction of large-scale parallelism 
¨  Multiple cores on a chip 

¤ Today: 
n Up to 48 CPU cores in a node 
n Up to 3200 compute elements on a single GPU 

¤ Host system can contain multiple GPUs: 10,000+ cores 
¤ We can build clusters of these nodes! 

¨  Future: 100,000s – millions of cores? 
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Summary and conclusions 

¨  Many different types of many-core hardware 
¨  Very different properties 

¤ Performance 
¤ Programmability 
¤ Portability 

¨  It's all about the memory 
¨  Choose the right platform for your application 

¤ Arithmetic intensity / Operational intensity 
¤ Roofline model 
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Open questions   

¨  New application domains – e.g., signal processing, 
graph processing.   
¤ Perfomrance analysis 
¤ Peformance prediction 
¤ Modeling  

¨  Memory patterns understanding, description, 
detection, automatic improvement  
¤ Local memory usage  

¨  Heterogeneous computing 
¤ Using both the host and the device  

¨  Application-device fitting  
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Questions?  
146 

¨  Slides are/will be available  
¨  If you are interested in working with us on using 

GPUs for new applications, let us know!  
 
 
 
 
 

    A.L.Varbanescu@uva.nl 



Backup slides 
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Example: Work queue 

// For algorithms where the amount of work per item 
// is highly non-uniform, it often makes sense to 
// continuously grab work from a queue. 
 
__global__ 
void workq(int* work_q, int* q_counter, 
           int queue_max, int* output) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int q_index = atomicInc(q_counter, queue_max); 
    int result = do_work(work_q[q_index]); 
    output[q_index] = result; 
} 
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Using shared memory 

// Adjacent Difference application: 
// compute result[i] = input[i] – input[i-1] 

 
__global__ void adj_diff_naive(int *result, int *input) { 

  // compute this thread’s global index 
  unsigned int i = blockDim.x * blockIdx.x + threadIdx.x; 

 
  if(i > 0) { 

    // each thread loads two elements from device memory 

    int x_i = input[i]; 
    int x_i_minus_one = input[i-1]; 

 
    result[i] = x_i – x_i_minus_one; 

  } 
} 
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Using shared memory 

// Adjacent Difference application: 
// compute result[i] = input[i] – input[i-1] 

 
__global__ void adj_diff_naive(int *result, int *input) { 

  // compute this thread’s global index 
  unsigned int i = blockDim.x * blockIdx.x + threadIdx.x; 

 
  if(i > 0) { 

    // each thread loads two elements from device memory 

    int x_i = input[i]; 
    int x_i_minus_one = input[i-1]; 

 
    result[i] = x_i – x_i_minus_one; 

  } 
} 
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Using shared memory 

// Adjacent Difference application: 
// compute result[i] = input[i] – input[i-1] 

 
__global__ void adj_diff_naive(int *result, int *input) { 

  // compute this thread’s global index 
  unsigned int i = blockDim.x * blockIdx.x + threadIdx.x; 

 
  if(i > 0) { 

    // each thread loads two elements from device memory 

    int x_i = input[i]; 
    int x_i_minus_one = input[i-1]; 

 
    result[i] = x_i – x_i_minus_one; 

  } 
} The next thread also reads input[i] 
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Using shared memory 
__global__ void adj_diff(int *result, int *input) { 

  unsigned int i = blockDim.x * blockIdx.x + threadIdx.x; 

 

  __shared__ int s_data[BLOCK_SIZE]; // shared, 1 elt / thread 

  // each thread reads 1 device memory elt, stores it in s_data   

  s_data[threadIdx.x] = input[i]; 

 

  // avoid race condition: ensure all loads are complete 

  __syncthreads();   

 

  if(threadIdx.x > 0) { 

    result[i] = s_data[threadIdx.x] – s_data[threadIdx.x–1]; 

  } else if(i > 0) { 

    // I am thread 0 in this block: handle thread block boundary 

    result[i] = s_data[threadIdx.x] – input[i-1]; 

  } 

} 
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Using shared memory: coalescing 
__global__ void adj_diff(int *result, int *input) { 

  unsigned int i = blockDim.x * blockIdx.x + threadIdx.x; 

 

  __shared__ int s_data[BLOCK_SIZE]; // shared, 1 elt / thread 

  // each thread reads 1 device memory elt, stores it in s_data   

  s_data[threadIdx.x] = input[i];   // COALESCED ACCESS! 

 

  // avoid race condition: ensure all loads are complete 

  __syncthreads();   

 

  if(threadIdx.x > 0) { 

    result[i] = s_data[threadIdx.x] – s_data[threadIdx.x–1]; 

  } else if(i > 0) { 

    // I am thread 0 in this block: handle thread block boundary 

    result[i] = s_data[threadIdx.x] – input[i-1]; 

  } 

} 
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Backup slides 
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CPU vs GPU Chip 
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AMD Magny-Cours (6 cores) ATI 4870 (800 cores) 

1 billion transistors 
256 mm2 

2 billion transistors 
346 mm2 



ATI GPUs 



Latest generation ATI 
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¨  Southern Islands 
¨  1 chip: HD 7970 

¤ 2048 cores 
¤ 264 GB/sec memory bandwidth 
¤ 3.8 tflops single, 947 gflops double precision 
¤ Maximum power: 250 Watts 
¤ 399 euros! 

¨  2 chips: HD 7990 
¤ 4096 cores, 7.6 tflops 

¨  Comparison: entire 72-node DAS-4 VU cluster has 
4.4 tflops 



ATI 5870 architecture overview 
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ATI 5870 SIMD engine 
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¨  Each of the 20 SIMD engines has: 
¤  16 thread processors x 5 stream cores = 80 scalar stream processing units 
¤  20 * 16 * 5 = 1600 cores total 
¤  32KB Local Data Share 
¤  its own control logic and runs from a shared set of threads 
¤  a dedicated fetch unit with 8KB L1 cache 
¤  a 64KB global data share to communicate with other SIMD engines 



ATI 5870 thread processor 
160 

¨  Each thread processor includes: 
¤ 4 stream cores + 1 special function 

stream core 
¤ general purpose registers 

¨  FMA in a single clock 



ATI 5870 Memory Hierarchy 
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¨  EDC (Error Detection Code) 
¤ CRC Checks on Data Transfers for Improved Reliability 

at High Clock Speeds 

¨  Bandwidths 
¤ Up to 1 TB/sec L1 texture fetch bandwidth 
¤ Up to 435 GB/sec between L1 & L2 
¤ 153.6 GB/s to device memory 
¤ PCI-e 2.0, 16x: 8GB/s to main memory 



Local 

Shared 

Device 

Device Local Shared 

Non - unified Address Space 

Unified Address Space 

0 32 - bit 

0 40 - bit 

* p _ local 

* p _ shared 

* p _ device 

* p 

Unified Load/Store Addressing 
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A Common Programming Strategy 

¨  Partition data into subsets that fit into shared 
memory 
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A Common Programming Strategy 

¨  Handle each data subset with one thread block 

164 



A Common Programming Strategy 

¨  Load the subset from device memory to shared 
memory, using multiple threads to exploit memory-
level parallelism 
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A Common Programming Strategy 

¨  Perform the computation on the subset from shared 
memory 
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A Common Programming Strategy 

¨  Copy the result from shared memory back to device 
memory 

167 


