
UVA HPC & BIG DATA COURSE

INTRODUCTORY LECTURES
Adam Belloum

Computing facilities
SURF/UvA/VU

From mono-core to exa-scale computer

3Bigger systems

Abstraction
Virtualisation

Ag
gr

eg
at

io
n

No central control

Re
lia

bl
e

fa
st

 n
et

w
or

k

Unreliable not very fast network

central control central control

central control

power wall and

… From ~ 1986 to ~ 2023…
Landscape

Introduction to Parallel programming
distributed systems

• Parallel programming MPI/openMP/RMI …
• Service Oriented Architecture and Web Service
• Grid computing / Virtualisation
• Cloud Computing
• Workflow
• Discussions

BigData

• General introduction to BigData
• MapReduce and Beyond
• Analytics of BigData
• Technology for Big Data

If you know these concepts you are
attending the wrong class …

• Supercomputing / High Performance Computing (HPC)
• Node
• CPU / Socket / Processor / Core
• Task
• Pipelining
• Shared Memory
• Symmetric Multi-Processor (SMP)
• Distributed Memory
• Communications
• Synchronization
• Granularity
• Observed Speedup
• Parallel Overhead
• Massively Parallel
• Embarrassingly Parallel
• Scalability

Content

• Computer Architectures
• High Performance Computing (HPC)
• Speed up
• Parallel programming models

Computer Architecture

• supercomputers use many CPUs to do the work
• All supercomputing architectures have
– processors and some combination cache
– some form of memory and input/ouput IO
– the processors are separated from every other

processors by some distance

• there are major differences in the way these parts
are connected

some scientific problems fit better some architectures
better than others

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

• How CPU works http://www.youtube.com/watch?v=cNN_tTXABUA
• How Computers Add Numbers In One Lesson:

http://www.youtube.com/watch?v=VBDoT8o4q00&feature=fvwp
• Computer Architecture Lesson 1: Bits and Byteshttp://www.youtube.com/watch?v=UmSelKbP4sc
• Computer Architecture Lesson 2: Memory addresses

http://www.youtube.com/watch?v=yF_txERujps&NR=1&feature=episodic
• Richard Feynman Computer Heuristics Lecture

http://www.youtube.com/watch?v=EKWGGDXe5MA

http://www.youtube.com/watch?v=cNN_tTXABUA
http://www.youtube.com/watch?v=VBDoT8o4q00&feature=fvwp
http://www.youtube.com/watch?v=UmSelKbP4sc
http://www.youtube.com/watch?v=yF_txERujps&NR=1&feature=episodic
http://www.youtube.com/watch?v=EKWGGDXe5MA

Parallel Computer Memory
Architectures

• we can also classify supercomputers according
to how the processors and memory are
connected

– couple of processors to a single large memory
address space

– couple of computers, each with its own memory
address space

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Parallel Computer Memory
Architectures

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Shared Memory
• Uniform Memory Access (UMA)
• Non-Uniform Memory Access (NUMA)

Parallel Computer Memory
Architectures

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Distributed Memory Multiprocessor
• Processors have their own local memory
• Changes it makes to its local memory have no effect on

the memory of other processors.

Why Use supercomputers?

• To solve larger problems
• To use of non-local resources
• To save time and/or money
• Because they enable concurrency

https://computing.llnl.gov/tutorials/parallel_comp/

DreamWorks Presents the Power of Supercomputing
http://www.youtube.com/watch?v=TGSRvV9u32M&feature=
fvwp

http://www.youtube.com/watch?v=TGSRvV9u32M&feature=fvwp

High Performance Computing

• What does High-Performance Computing (HPC)
mean?
– High-performance computing (HPC) is the use of super

computers and parallel processing techniques for solving
complex computational problems.

– HPC technology focuses on developing parallel processing
systems by incorporating both administration and
parallel computational techniques.

The terms high-performance computing and
supercomputing are sometimes used interchangeably.

http://www.techopedia.com/definition/4595/high-performance-computing-hpc

Content

• High Performance Computing
• Computer Architectures
• Speed up
• Parallel programming models
• Example of Parallel programs

Speedup

• How can we measure how much faster our
program runs when using more than one
processor?

• Define Speedup S as:
– the ratio of 2 program execution times
– constant problem size
• T1 is the execution time for the problem on a single

processor (use the “best” serial time)
• TP is the execution time for the problem on P processors

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Linear

Strange

Sp
ee

du
p:

 S
=T

1/
Tp

5

10

15

 2
0

 2

5

 3
0

 3

5

1 5 10 15 20 25 30 35
Number of CPUs

Linear

Super-Linear

Sub-Linear

Speedup

• Linear speedup
• Sublinear speedup
• Superlinear speedup

• why do a speedup test?

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup: Limit of Parallel programming

• A program always has a sequential part and a parallel part

• the best you can do is to sequentially execute 4 instructions
no mater how many processors you get

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Speedup: Implication

• Parallel programming is great for programs with
a lot of parallelism
– Jacobi, scientific applications (weather prediction,

DNA sequencing, etc)
• Parallel programming may not be that great

some traditional applications:
• Computing Fibonacci series F(K+2)=F(k+1) + F(k)

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Speedup: Amdahl’s Law (1967)

• Amdahl's Law states that potential program
speedup is defined by the fraction of code (P)
that can be parallelized:

1
– speedup = --------

1 - P

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup: Amdahl’s Law (1967)

• Introducing the number of processors
performing the parallel fraction of work, the
relationship can be modeled by:

P = parallel fraction of the code
S = Section fraction of the code
N= Number of Processors

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup = !
"
$%

Gustafson’s law

• Amdahl’s law assumes a constant problem size
• Now, let’s allow scaling of the problem size
• Gustafson’s law considers the execution time of a

parallel program using
– n processors
– with a sequential fraction s (with s in [0,1])

24

Speedup = s+ n(1− s)
s+ (1− s)

Translates into: Speedup = s+n(1-s) = n–s(n-1)

Content

• High Performance Computing
• Computer Architectures
• Speed up
• How to design Parallel programs
• Parallel programming models
• Example of Parallel programs

Architectures: Michael J. Flynn (1972)

• Flynn’s taxonomy distinguish multi-processor
computer according to independent dimensions
– Instruction
– Data

• Each dimension
– Single
– Multiple

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Design Parallel programs

• Domain decomposition and functional
decomposition
– Domain decomposition: DATA associate with a

problem is decomposed.
• Each parallel task then works on a portion of data

– Functional deposition: focus on the computation
that is be performed. The problem is decomposed
according to the work that must be done.
• Each task then performs a portion of the overall work

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Domain decomposition:
• Also Called data parallelism

• DATA associate with a
problem is decomposed.

• Each parallel task then works
on a portion of data

• Example: MapReduce

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Domain decomposition methods:
• Same datum may be needed by

multiple tasks

• Decompose the data in such a
manner that the required
communication is minimized

• Ensure that the computational
loads on processes are balanced

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Jason Maassen

Functional deposition

• the focus is on the
computation that is to be
performed rather than on the
data manipulated by the
computation.

• The problem is decomposed
according to the work that
must be done.

• Each task then performs a
portion of the overall work.

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Jason Maassen

Data Dependence
• A dependence exists between programs when the order of

statement execution affects the results of the program.

• A data dependence results from multiple use of the same
location(s) in storage by different tasks.

(task 1) – (task2)
– True dependence: Write X – Read X
– Output dependence: Write X – Write X
– Anti dependence: Read X – Write X

Dependencies: are important to parallel programming because
the are one of the inhibitors to parallelism.

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data Dependence

• The value of a(I-1) must
be computed before the
value of a(I)

• A(I) exhibits a data
dependency on a(I-1).

• Parallelism is inhibited.

Load balancing

• Distribute the computation/communication
such that all the processor are busy all the time.

• At a synchronization point, the worst case
performance is the real performance

Communications

• Parallel applications that do not need
communications are called embarrassingly
parallel programs
– Monte carlo method, Seti at home
– Most programs (e.g. Jacobi) are not like that
– Communication is inherent to exploit parallelism in

a program

Communications

• Factors to consider:
– Cost of the communication
– Latency and bandwidth
– Synchronous and asynchronous
– Point to point or collective

.

Overlapping communication and
computation

• Make processors busy when waiting for
communication results
– Usually achieved by using non-blocking

communicating primitives

Loading balancing, minimizing communication and
overlapping communication with computation
are keys to develop efficient parallel applications

Some basic load balancing techniques

•Equally partition the work each task receives
– For array/matrix operations where each task performs

similar work, evenly distribute the data set among the tasks.
– For loop iterations where the work done in each iteration

is similar, evenly distribute the iterations across the tasks.
• Use dynamic work assignment
– Sparse arrays
– Adaptive grid method
– If a heterogeneous mix of machines with varying

performance
à scheduler - task pool approach

pragma
For (I=0;I<N;I++){
…
}

Granularity

• Computation/ Communication
– In parallel programming, granularity is a qualitative

measure of the ratio of the computation to
communication.

– Periods of computation are typically separated form
periods of communication by synchronization events
• Computation phase and communication phase

Granularity
• Fine-grain parallelism

– Relatively small amount of computational work are done
between communication events

Low computation to communication ratio Implies high
commutation over head and less opportunity for

performance enhancement

• Coarse-grain parallelism
– Relatively large amounts of computation work are done

between communication/synchronization events

High computation to communication ratio Implies more
opportunity for performance increase Harder to load

balance efficiently

Deadlock/Livelock

• Deadlock appears when two or more
programs are waiting and none can make
progress

• Livelock results from indefinite loop.

content

• High Performance Computing
• Computer Architectures
• Speed up
• How to design parallel applications
• Parallel programming models
• Example of Parallel programs

Parallel Programming models

Data Parallelism/task parallelism
• Shared Memory (without threads/Threads)
• Distributed Memory / Message Passing
• Single Program Multiple Data (SPMD)
• Multiple Program Multiple Data (MPMD)

https://computing.llnl.gov/tutorials/parallel_comp/#ModelsOverview

https://computing.llnl.gov/tutorials/parallel_comp/

Parallel programming

• need to do something to your program to use
multiple processors

• need to incorporate commands into your
program which allow multiple threads to run
– one thread per processor
– each thread gets a piece of the work

• several ways (APIs) to do this …

Parallel programming

Message Passing Interface (MPI)

• Interprocess communication
which have separate address
spaces

• Data is explicitly sent by one
process and received by
another
– Data transfer usually requires cooperative

operations to be performed by each
process.

– For example, a send operation must have a
matching receive operation

Parallel programming

Message Passing Interface (MPI)

• What is MPI?
– A message-Passing Library specification
– Not a language or compiler specification
– Not a specific implementation or product

• For parallel computers, clusters, and
heterogeneous networks.
– Designed to provide access to advanced parallel

hardware for :
• End users, library writers, tools developers

Parallel programming

Message Passing Interface (MPI)
• Why use MPI?

– Optimized for performance
– Will take advantage of fastest transport found

• Shared memory (within a computer)
• Fast cluster interconnects (Infiniband, Myrinet..)

between computers (nodes)
• TCP/IP if all else fails

Parallel programming

Message Passing Interface (MPI)

Deadlocks?
• Send a large message from proc A to proc B

– If there is insufficient storage at the destination, the
send must wait for the user to provide the
memory space (through a receive)

• What will happen? (unsafe)
– Process 0 Process 1

Send(1) Send(0)
Recv(1) Recv(0)

Parallel programming

Message Passing Interface (MPI)

• Very good for distributing large computations

across reliable network

• Would be terrible for a distributed internet chat

client or BitTorrent server

Example MPI Hello World

);

Threads

• threads model of parallel
programming, a single
process can have multiple,
concurrent execution
paths

• Each thread has local data,
but also, shares the entire
resources of executable
a.out.

• Threads communicate
with each other through
global memory

Parallel programming

Open MultiProcessing (OpenMP)

• What is OpenMP?
– is a library that supports parallel

programming in shared-memory parallel
machines.

– allows for the parallel execution of
code (parallel DO loop), the definition
of shared data (SHARED), and
synchronization of processes

Parallel programming

• What is the programming model?
– All threads have access to the same,

globally shared, memory
– Data can be shared or private

• Shared data is accessible by all threads
• Private data can be accessed only by the

threads that owns it

• Open MultiProcessing (OpenMP)

Data transfer is transparent to the programmer
Synchronization takes place, but it is mostly implicit

Example OpenMP Hello World

“);

Parallel programming

Pros/Cons of OpenMP
ü easier to program and debug than MPI
ü directives can be added incrementally -

gradual parallelization
ü can still run the program as a serial code
ü serial code statements usually don't need

modification
ü code is easier to understand and maybe

more easily maintained

Ø can only be run in shared memory
computers

Ø requires a compiler that supports
OpenMP

Ø mostly used for loop parallelization

Pros/Cons of MPI
ü runs on either shared or distributed

memory architectures
ü can be used on a wider range of

problems than OpenMP
ü each process has its own local variables
ü distributed memory computers are less

expensive than large shared memory
computers

Ø requires more programming changes to
go from serial to parallel version

Ø can be harder to debug
Ø performance is limited by the

communication network between the
nodes

content

• High Performance Computing
• Computer Architectures
• Speed up
• How to design parallel applications
• Parallel programming models
• Example of Parallel programs

calculations on 2-dimensional array
elements

• The serial program calculates one element at a
time in sequential order.

• Serial code could be of the form:

https://computing.llnl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: solution 1

• Implement as a Single Program Multiple Data
(SPMD) model.

• each task executes the portion of the loop
corresponding to the data it owns.

https://computing.llnl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: implementation

• Implement as a Single Program Multiple Data
(SPMD) model.

• Master process initializes array, sends info to
worker processes and receives results.

• Worker process receives info, performs its share
of computation and sends results to master.

https://computing.llnl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: implementation

https://computing.llnl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: solution 2

• Solution1: demonstrated static load balancing:
– Each task has a fixed amount of work to do
– May be significant idle time for faster or more lightly

loaded processors - slowest tasks determines overall
performance.

• If you have a load balance problem (some tasks
work faster than others),
– you may benefit by using a "pool of tasks" scheme.

https://computing.llnl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: implementation

• Master Process:
– Holds pool of tasks for worker processes to do
– Sends worker a task when requested
– Collects results from workers

• Worker Process: repeatedly does the following
– Gets task from master process
– Performs computation
– Sends results to master

calculations on 2-dimensional array
elements: implementation

References

1. Introduction to Parallel
Computinghttps://computing.llnl.gov/tutorials/parallel_comp/#
MemoryArch

2. Intro to Parallel Programming . Lesson 2, pt. 1- Shared Memory
and threads http://www.youtube.com/watch?v=6sL4C2SwszM

3. Intro to Parallel Programming . Lesson 2, pt. 2- Shared Memory
and threads http://www.youtube.com/watch?v=ydG8cOzJjLA

4. Intro to Parallel Programming . Lesson 2, pt. 3- Shared Memory
and threads
http://www.youtube.com/watch?v=403LWbrA5oU

https://computing.llnl.gov/tutorials/parallel_comp/
http://www.youtube.com/watch?v=6sL4C2SwszM
http://www.youtube.com/watch?v=ydG8cOzJjLA
http://www.youtube.com/watch?v=403LWbrA5oU

Topics Organizers Type/duration
Intro to distributed sys &
BigData

(Adam Belloum, UvA) Lectures/6 hours

Introduction to Unix (Willem Vermin, SURF SARA) Workshop/2 hours

Using Lisa / Using
Cartesius

(Willem Vermin, SURF SARA) Workshop/4 hours

Using Hadoop (Machiel Jansen/ Jeroen
Schot, SURF SARA)

Workshop/8 hours

GPU on DAS4 (Ana Varbanescu, UvA/VU) Workshop/4 hours

Local and Remote
Visualisation Techniques

(Rob Belleman, UvA) Workshop/4 hours

HPC Cloud (Markus van Dijk/ Natalie
Danezi, SURF SARA)

Workshop/8 hours

MPI / OpenMP (Clemens Grelck, UvA) Workshop/4 hours

TODO (for Students)

• Foster et al. "Cloud Computing and Grid Computing 360-
Degree Compared," Grid Computing Environments Workshop,
2008. GCE '08 , vol., no., pp.1,10, 12-16 Nov. 2008 doi:
10.1109/GCE.2008.4738445

• Adam Jacobs “The pathologies of big data”, Magazine
Communications of the ACM ,Vol. 52 Issue 8, Aug. 2009.
doi:10.1145/1536616.1536632

