UVA HPC & BIG DATA COURSE

INTRODUCTORY LECTURES

Adam Belloum

edunl Nedertands | Q

m ICT facilities » Educationand ICT~ Research & ICT~ About SURF

Research & ICT

Do you encounter limitations with your own systems? SURF offers researchers a o)
wide range of services in the field of high performance computing (HPC): tens of QV-KQ
thousands of times faster than your PC.

Team SURFsara

Questions? Get in touch

Choose your compute service Consultancy & training Knowledge & inspiration Innovation | More v

| Choose your compute service

Which compute service for Request access

which research question? Apply directly for cloud and
cluster computing on HPC Cloud
Lisa, Cartesius Supercomputer
and Grid.

SURF offers several services in the area
of High Performance Computing (HPC).
Which one do you need for your
research?

Apply>
Learn more

Lisa Compute Cluster: extra processing
power for research

Lisa Compute Cluster combines processing power with user friendliness. Are the limits
of your own system inhibiting your research? This service lets you upscale to a higher
level. Lisa Compute Cluster is preconfigured with a range of software packages,
meaning you can start working right away.

Dutch National Supercomputer Cartesius

The Dutch National Supercomputer, Cartesius, is the flagship of

SURF's research services. It is the most comprehensive system in the field of capability
computing in the Netherlands. Cartesius is especially in high demand for its combination
of fast processors and internal network, large storage capacity and the ability to process
large datasets.

HPC Cloud: your flexible compute
infrastructure

HPC Cloud gives you and your project team complete control over your computing
infrastructure. The infrastructure ranges from a single work station to a complete cluster
and can be expanded to suit your needs. You can use your own operating system and
analysis software. HPC Cloud is housed in SURF's own data centre.

Visualisation: more insight into your data

Our Visualisation service allows you to visualise your own datasets on your desktop.
This makes it easy to identify connections between data or gain other insight into your
datasets. SURF offers a powerful remote visualisation service that combines high
performance with ease of use.

Computing facilities
SURF/UVA/VU

Request access

g

Request access

About DAS-5

Distributed A
Sponsors

DAS-5 Overview

DAS-5 (The Distributed ASCI Supercomputer 5) is a six-
cluster wide-area distributed system designed by the
Advanced School for Computing and Imaging (ASCI). DAS-5
is funded by NWO/NCF (the Netherlands Organization for
Scientific Research), and the participating universities and
organizations (see below). As one of its distinguishing
features, DAS-5 employs a number of HPC Accelerators
(e.g., currently various GPU types, FPGA's are also planned)
and a internal wide-area OpenFlow interconnect based on
light paths.

The goal of DAS-5 is to provide a common computational
infrastructure for researchers within ASCI, who work on
various aspects of parallel, distributed, grid and cloud
computing, and large-scale multimedia content analysis.
The following institutes and organisations are directly
involved in the realization and running of DAS-5:

VU University, Amsterdam (VU)

Leiden University (LU)

University of Amsterdam (UvA)

Delft University of Technology (TUD)

The MultimediaN Consortium (UvA-MN

Netherlands Institute for Radio Astronomy (ASTRON)
Netherlands e-Science Center (NLeSC)

DAS-5 cluster at VU DAS-5 clusters at
University, Amsterdam UvA/UvA-MN, Amsterdam

Unmonrtgt e e
> _ ASTRON
UDelft =

Research

[Announcements
9 October 2018

The next generation DAS,
DAS-6, will get funding! For
details, see the DAS
Achievements page. DAS-6 is
expected to become
operational in the second half
of 2020.

2 Jan 2017

DAS-5/VU has been extended
with 4 TitanX-Pascal GPUs.

May, 2016
IEEE Computer publishes

paper about 20 years of
Distributed ASCI

Supercomputer. See the DAS

Achievements page.
28 Sep 2015

DAS-5/VU has been extended
with 16 GTX TitanX GPUs.

Landscape
... From ~ 1986 to~ 2023...

From mono-core to exa-scale computer

Aggregation

Reliable fast network

Introduction to Parallel programming
distributed systems

Parallel programming MPl/openMP/RMI ...
Service Oriented Architecture and Web Service
Virtualisation
Cloud Computing

Workflow

Discussions

BigData

General Introduction to BigData
MapReduce and Beyond
Analytics of BigData

Technology for Big Data

If you know these concepts you are
attending the wrong class ...

Supercomputing / High Performance Computing (HPC)
Node

CPU / Socket / Processor / Core
Task

Pipelining

Shared Memory

Symmetric Multi-Processor (SMP)
Distributed Memory
Communications

Synchronization

Granularity

Observed Speedup

Parallel Overhead

Massively Parallel

Embarrassingly Parallel

Scalability

Content

Computer Architectures
High Performance Computing (HPC)
Speed up

Parallel programming models

Computer Architecture

* supercomputers use many CPUs to do the work

* All supercomputing archrtectures have
— processors and some combination cache
— some form of memory and input/ouput 1O

— the processors are separated from every other
processors by some distance

* there are major differences in the way these parts
are connected

some scientific problems fit better some archrtectures
better than others

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

EI

Supercomputer - each blue
light is a node

Node - standalone
Von Neumann computer

CPU / Processor / Socket - each
has multiple cores / processors.

o !
Cote' | “Core| “Core™{ =51 “Core | Core
T T TLE !

=1 wShared 43 Ciche = | (1 « Sharid 43 Cace = = ¥
- v | i s

How CPU works http://www.youtube.com/watch?v=cNN tTXABUA

How Computers Add Numbers In One Lesson:
http://www.youtube.com/watch?v=VBDoT804g00&feature=fvwp

Computer Architecture Lesson 1: Bits and Byteshttp://www.youtube.com/watch?v=UmSelKbP4sc
Computer Architecture Lesson 2: Memory addresses

http://www.youtube.com/watch?v=yF txERujps&NR=1&feature=episodic

Richard Feynman Computer Heuristics Lecture
http://www.youtube.com/watch?v=EKWGGDXe5MA

http://www.youtube.com/watch?v=cNN_tTXABUA
http://www.youtube.com/watch?v=VBDoT8o4q00&feature=fvwp
http://www.youtube.com/watch?v=UmSelKbP4sc
http://www.youtube.com/watch?v=yF_txERujps&NR=1&feature=episodic
http://www.youtube.com/watch?v=EKWGGDXe5MA

Parallel Computer Memory
Architectures

* we can also classify supercomputers according
to how the processors and memory are
connected

— couple of processors to a single large memory
address space

— couple of computers, each with its own memory

address space

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Parallel Computer Memory
Architectures

Shared Memory
* Uniform Memory Access (UMA)
* Non-Uniform Memory Access (NUMA)

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Parallel Computer Memory
Architectures

Distributed Memory Multiprocessor
* Processors have their own local memory

* (Changes it makes to its local memory have no effect on
the memory of other processors.

| Bus Interconnect |

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Why Use supercomputers?

* Jo solve larger problems

e Jo use of non-local resources

* Jo save time and/or money

* Because they enable concurrency

DreamWorks Presents the Power of Supercomputing
http://www.youtube.com/watch?v=TGSRvV9u32M&feature=

fvwp

https://computing.linl.gov/tutorials/parallel_comp/

http://www.youtube.com/watch?v=TGSRvV9u32M&feature=fvwp

High Performance Computing

* What does High-Performance Computing (HPC)
mean?

— High-performance computing (HPC) is the use of super
computers and parallel processing techniques for solving
complex computational problems.

— HPC technology focuses on developing parallel processing
systems by incorporating both administration and
parallel computational techniques.

The terms high-performance computing and
supercomputing are sometimes used interchangeably.

http://www.techopedia.com/definition/4595/high-performance-computing-hpc

Content

* Speed up
* Parallel programming models

* Example of Parallel programs

Speedup

How can we measure how much faster our
brogram runs when using more than one
DIroCessor!

Define Speedup S as:

— the ratio of 2 program execution times

— constant problem size

* T, Is the execution time for the problem on a single
processor (use the “best” serial time)

* Tp is the execution time for the problem on P processors

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup

Linear speedup Speedup Curves

. g

-

Sublinear speedup

30 35

Superlinear speedup

T1/Tp
25

-

why do a speedup test!

15 20

Speedup: S

10

Linear

e Super-Linear

5

Sub-Linear

.

1 5 10 15 20 25 30 35
Number of CPUs

. . o o

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup: Limit of Parallel programming

* A program always has a sequential part and a parallel part

(1) A=B+C;

(2) D= A+ 1;
(MEaD+A

(4) For (I () I<E; I++)
(3) M) =0;

* the best you can do is to sequentially execute 4 instructions
no mater how many processors you get

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Speedup: Implication

* Parallel programming is great for programs with
a lot of parallelism
— Jacobl, scientific applications (weather prediction,
DNA sequencing, etc)

* Parallel programming may not be that great

some traditional applications:
* Computing Fibonacci series F(K+2)=F(k+1) + F(k)

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Speedup: Amdahl’s Law (1967)

* Amdahl's Law states that potential program
speedup Is defined by the fraction of code (P)
that can be parallelized:

—_
]

— speedup = -

|
Speedup
L) — [o] (R N o o -4 () [}

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Parallel Portion of Code

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup: Amdahl’s Law (1967)

* Introducing the number of processors
performing the parallel fraction of work, the
relationship can be modeled by:

25 o

Parallel Portion

25%

jL 50%
0T 90%

95% |

Speedup = 5
N

P = parallel fraction of the code
S = Section fraction of the code

N= Number of Processors

Speedup

10

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Gustafson’s law

* Amdahl’s law assumes a constant problem size
* Now, let’s allow scaling of the problem size

e Gustafson’s law considers the execution time of a
parallel program using

— N processors

— with a sequential fraction s (with s in [O,1])

s+n(l-s)
s+(1-1)

Translates into: Speedup = s+n(1-s) = n—s(n-1)

Speedup =

24

Content

—How to design Parallel programs

Parallel programming models

—xample of Parallel programs

Architectures: Michael). Flynn (1972)

Flynn's taxonomy distinguish multi-processor
computer according to iIndependent dimensions

— Instruction
— Data
EFach dimension SISD SIMD
: Single Instruction, Single Data | Single Instruction, Multiple Data
— Single
— Multiple MISD
Multiple Instruction, Single Data

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Design Parallel programs

* Domain decomposition and functional
decomposition
— Domain decomposition: DATA associate with a

problem I1s decomposed.
* Each parallel task then works on a portion of data

— Functional deposition: focus on the computation
that is be performed. The problem is decomposed
according to the work that must be done.

* Each task then performs a portion of the overall work

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Domain decomposition:

* Also Called data parallelism

* DATA associate with a
problem Is decomposed.

* FEach parallel task then work
on a portion of data

* Example: MapReduce

Problem Data Set

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Domain decomposition methods:

* Same datum may be needed by Domain deposition methods

multiple tasks

. o__ 1N U
* Decompose the data in such a ELOER cyeLte

1D
20
manner that the required
communication is minimized ‘ :‘
* Ensure that the computational F
loads on processes are balanced E |_|_I_I_| ﬁ

cycLic,” *, CYCLIC CYCLIC, CYCLIC

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Hierarchical work dlstrlbutlon

To solve this problem we designed a
hierarchical work distribution

algorithm that reclursively splits 5 : y
the world into blocks (top-down). il s 5 i

iR

Example:

Split each result into 32 (nodes)
Split each result into 16 (cores)

Maximize load balance and
minimize communication at each
level!

Source: A Distributed Approach to Improve the Performance)r U e Pa .\,L
Ben van Werkhoven et al., Geoscientifi opment, 7

- PN

Jason Maassen

Functional deposition

* the focus is on the
computation that is to be
performed rather than on the

data manipulated by the :
- Problem Instruction Set
computation.

* The problem is decomposed
according to the work that

must be done. r [:I .
task 1 task 2

* Each task then performs a sk
portion of the overall work.

— -

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

CESM model coupling

Data dependencies
allow some models
to run concurrently,
while others must
run in sequence.

(balancing their run times
is black magic)

nnnnnn

sea ice

atmosphere

atmosphere

sea ice

sea ice sea ice

atmosphere
atmosphere

>

TIME

CORES

Atmosphere, land and sea ice exchange data every
30 model minutes, but ocean only 1x to 4x each model day!

ZLLBLY:

Jason Maassen

\ 4

Data Dependence

* A dependence exists between programs when the order of
statement execution affects the results of the program.

* A data dependence results from multiple use of the same
location(s) In storage by different tasks.

(task) — (task2)
— True dependence: Write X — Read X
— Output dependence: Write X —Write X
— Anti dependence: Read X —Write X

Dependencies: are important to parallel programming because
the are one of the inhibitors to parallelism.

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data Dependence

* The value of a(l-1) must

be computed before the
value of a(l)

Data dependency examples

Fe k=0, 1500, 144) | [For 1=0:Je500; +4)
al)=0; al)=a(l-1)+1;

* A(l) exhibits a data
dependency on a(l-1).

 Parallelism Is inhibrted.

Load balancing

* Distribute the computation/communication
such that all the processor are busy all the time.

* At a synchronization point, the worst case
performance Is the real performance

Communications

* Parallel applications that do not need
communications are called embarrassingly
parallel programs
— Monte carlo method, Seti at home
— Most programs (e.g. Jacobi) are not like that

— Communication is inherent to exploit parallelism in
a program

Communications

e Factors to consider:

— Cost of the communication
— Latency and bandwidth
— Synchronous and asynchronous

— Point to point or collective

Overlapping communication and
computation

* Make processors busy when waiting for
communication results

— Usually achieved by using non-blocking
communicating primrtives

Loading balancing, minimizing coommunication and
overlapping communication with computation
are keys to develop efficient parallel applications

Some basic load balancing techniques

* Equally partition the work each task receives

— For array/matrix operations where each task performs
similar work, evenly distribute the data set among the tasks.

— For loop iterations where the work done in each rteration
s similar, evenly distribute the iterations across the tasks.

* Use dynamic work assignment

— Sparse arrays
— Adaptive grid method

— If a heterogeneous mix of machines with varying
performance

= scheduler - task pool approach

Granularity

e Computation/ Communication

— In parallel programming, granularity is a qualitative
measure of the ratio of the computation to
communication.

— Periods of computation are typically separated form
periods of communication by synchronization events

* Computation phase and communication phase

Granularity

awn}

* Fine-grain parallelism
— Relatively small amount of computational work are done
between communication events

Low computation to communication ratio Implies high
commutation over head and less opportunity for
performance enhancement

* Coarse-grain parallelism
— Relatively large amounts of computation work are done
between communication/synchronization events

awl}

High computation to communication ratio Implies more
opportunity for performance increase Harder to load
balance efficiently

¥

" communicatio
¥ computation

Deadlock/Livelock

* Deadlock appears when two or more
Drograms are waiting and none can make
Drogress

* Livelock results from indefinrte loop.

content

* Parallel programming models

* Example of Parallel programs

Parallel Programming models

Data Parallelism/task parallelism

* Shared Memory (without threads/ Threads)
* Distributed Memory / Message Passing

* Single Program Multiple Data (SPMD)

* Multiple Program Multiple Data (MPMD)

https://computing.linl.gov/tutorials/parallel comp/#ModelsOverview

https://computing.llnl.gov/tutorials/parallel_comp/

Parallel programming

need to do something to your program to use
multiple processors

need to incorporate commands into your
program which allow multiple threads to run

— one thread per processor

— each thread gets a piece of the work

several ways (APls) to do this ...

Parallel programming

Message Passing Interface (MPI)

* Interprocess communication
which have separate address
spaces

« Data is explicitly sent by one
process and received by
another

— Data transfer usually requires cooperative
operations to be performed by each
process.

— For example, a send operation must have a
matching receive operation

Basic Message Passing

Processor A Processor B
memory memory
network
D Bl iic
send(data) receive(data)

What 1s message passing?

+ Data transfer plus synchronization

+ Requires cooperation of sender and receiver
« Cooperation not always apparent in code)

Parallel programming

Message Passing Interface (MPI)
* What is MPI?

— A message-Passing Library specification
— Not a language or compiler specification

— Not a specific implementation or product

* For parallel computers, clusters, and
heterogeneous networks.

— Designed to provide access to advanced parallel
hardware for:

* End users, library writers, tools developers

Basic Message Passing

Processor A Processor B

memory memory
network

Lo gl o

send(data) receive(data)

What 1s message passing?

+ Data transfer plus synchronization

+ Requires cooperation of sender and receiver
« Cooperation not always apparent in code

Parallel programming

Message Passing Interface (MPI)
Why use MPI?

— Optimized for performance
— Will take advantage of fastest transport found
* Shared memory (within a computer)

* Fast cluster interconnects (Infiniband, Myrinet..)
between computers (nodes)

e TCP/IP if all else fails

Basic Message Passing

Processor A Processor B

memory memory
network

Lo gl o

send(data) receive(data)

What 1s message passing?

+ Data transfer plus synchronization

Process 0 - May | Send? f‘
Process 1 Yes

Time

+ Requires cooperation of sender and receiver
+ Cooperation not always apparent in code

Parallel programming

Message Passing Interface (MPI)

Deadlocks!?

* Send a large message from proc A to proc B

— If there is insufficient storage at the destination, the
send must wait for the user to provide the

memory space (through a receive)

* What will happen?! (unsafe)
— Process 0
Send(1)
Recv(l)

Process |
Send(0)
Recv(0)

Basic Message Passing

Processor A Processor B

memory memory
network

Lo gl o

send(data) receive(data)

What 1s message passing?

+ Data transfer plus synchronization

+ Requires cooperation of sender and receiver
« Cooperation not always apparent in code

Parallel programming

Basic Message Passing

Processor A Processor B

Message Passing Interface (MPI)

memory memory
network

Lo gl o

send(data) receive(data)

 Very good for distributing large computations

across reliable network
What 1s message passing?

+ Data transfer plus synchronization

* Would be terrible for a distributed internet chat eucesso [N o Se /‘

client or BitTorrent server

Time

+ Requires cooperation of sender and receiver
« Cooperation not always apparent in code

Example MPI Hello World

#include <mpi.h>;

int main(int argc, char** argv) ({

o= . - —

// Print off a hello world message
printf("Hello world from processor

);

>>> export MPIRUN=/home/kendall/bin/mpirun

>>> export MPI_HOSTS=host_file
>>> ./run.perl mpi_hello_world
/home/kendall/bin/mpirun -n 4 -f host_file ./mpi_hello_world

Hello world from
Hello world from
Hello world from
Hello world from

processor
processor
processor
processor

cetus2, rank 1
cetusl, rank 0@
cetus4, rank 3
cetus3, rank 2

out
out
out
out

of 4 processors
of 4 processors
of 4 processors
of 4 processors

Threads

* threads model of parallel
programming, a single
process can have multiple,
concurrent execution
paths

e Fach thread has local data,
but also, shares the entire
resources of executable
a.out.

* Threads communicate
with each other through
global memory

instructions

_
-«

core core

core core

Il

MEMORY

2wy

Parallel programming

Open MultiProcessing (OpenMP)
* What is OpenMP?

— Is a library that supports parallel
programming in shared-memory parallel
machines.

— allows for the parallel execution of
code (parallel DO loop), the definition
of shared data (SHARED), and

synchronization of processes

Parallel programming

* Open MultiProcessing (OpenMP) @0

* What is the programming model!

x -S'hared
— All threads have access to the same, g Memo.ry

globally shared, memory

"l ®69
— Data can be shared or private

* Shared data is accessible by all threads

* Private data can be accessed only by the
threads that owns it

Data transfer is transparent to the programmer
Synchronization takes place, but it is mostly implicit

Example OpenMP Hello World

finclude <omp.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv([]) {

$ icc -o omp_helloc -openmp omp_hello.c

omp_hello.c(22): (col. 1) remark: OpenMP DEFINED REGION WAS PARALLELIZED.
$ export OMP_NUM_THREADS=3

$./omp_helloc

Hello World from thread
Hello World from thread
Hello World from thread

Number of threads = 3
o

0
2
1

nwonon

printf("Number of threads « “);

Parallel programming

Pros/Cons of OpenMP

v

v
v
v
v

A2 74

easier to program and debug than MPI

directives can be added incrementally -
gradual parallelization

can still run the program as a serial code

serial code statements usually don't need
modification

code is easier to understand and maybe
more easily maintained

can only be run in shared memory
computers

requires a compiler that supports
OpenMP

mostly used for loop parallelization

Pros/Cons of MPI

v

v
v
v

A\

runs on either shared or distributed
memory architectures

can be used on a wider range of
problems than OpenMP

each process has its own local variables

distributed memory computers are less
expensive than large shared memory
computers

requires more programming changes to
go from serial to parallel version

can be harder to debug

performance is limited by the
communication network between the
nodes

content

High Performance Computing
Computer Architectures

Speed up

—How to design parallel applications

Parallel programming models

—xample of Parallel programs

calculations on 2-dimensional array
elements

* The serial program calculates one element at a
time In sequential order.

e Serial code could be of the form:;

do j 1,
do i 1,

nes s

a(i,j) = fen(i,j) |

end do i

end do

|fcn(i j)|

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array

elements: solution |

* Implement as a Single Program Multiple Data

(SPMD) model.

* each task executes the portion of the loop

corresponding to the data it owns.

do j = mystart, myend
do i =1,n

a(i,j) = fen(i,3)
end do
end do

Ifcn(i j)|

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: implementation

* Implement as a Single Program Multiple Data
(SPMD) model.

* Master process inrtializes array, sends info to
worker processes and recelves results.

* Worker process receives info, performs its share
of computation and sends results to master.

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: implementation

find out if I am MASTER or WORKER

if I am MASTER
initialize the array
send each WORKER info on part of array it owns
send each WORKER its portion of initial array
receive from each WORKER results

else if I am WORKER
receive from MASTER info on part of array I own

receive from MASTER my portion of initial array

calculate my portion of array

do j = my first column,my last column
do i = 1,n
a(i,j) = fen(4i,3)
end do
end do

send MASTER results

endif

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: solution 2

* Solution|: demonstrated static load balancing:

— Each task has a fixed amount of work to do

— May be significant idle time for faster or more lightly
oaded processors - slowest tasks determines overall
pberformance.

* |f you have a load balance problem (some tasks
work faster than others),

— you may benefit by using a "pool of tasks" scheme.

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: implementation

* Master Process:
— Holds pool of tasks for worker processes to do
— Sends worker a task when requested

— Collects results from workers

* Worker Process: repeatedly does the following

— Gets task from master process
— Performs computation

— Sends results to master

calculations on 2-dimensional array
elements: implementation

find out if I am MASTER or WORKER
if I am MASTER
do until no more jobs
if request send to WORKER next job
else receive results from WORKER
end do

else i1if I am WORKER

do until no more jobs
request job from MASTER
receive from MASTER next job

calculate array element: a(i,j) = fcn(i,j)

send results to MASTER
end do

endif

References

Introduction to Parallel

Computinghttps://computing.linl.gov/tutorials/parallel comp/#
MemoryArch

Intro to Parallel Programming . Lesson 2, pt. |- Shared Memory
and threads http://www.youtube.com/watch?v=6sl 4C25wszM
Intro to Parallel Programming . Lesson 2, pt. 2- Shared Memory
and threads http://www.youtube.com/watch?v=ydG8cOz||L A

Intro to Parallel Programming . Lesson 2, pt. 3- Shared Memory
and threads
http://www.youtube.com/watchiv=4031 WbrA5oU

https://computing.llnl.gov/tutorials/parallel_comp/
http://www.youtube.com/watch?v=6sL4C2SwszM
http://www.youtube.com/watch?v=ydG8cOzJjLA
http://www.youtube.com/watch?v=403LWbrA5oU

TODO (for Students)

Intro to distributed sys & (Adam Belloum, UvA) Lectures/6 hours
BigData

* Foster et al. "Cloud Computing and Grid Computing 360-
Degree Compared,” Grid Computing Environments Workshop,
2008. GCE '08 , vol., no., pp. 1,10, 12-16 Nov. 2008 doi:
10.1109/GCE.2008.4738445

* Adam Jacobs “The pathologies of big data”, Magazine
Communications of the ACM ,Vol. 52 Issue 8, Aug. 2009.
doi10.1145/1536616.1536632

