#### UVA HPC & BIG DATA COURSE

Grid Computing

Adam Belloum

# outline

- Grid computing: Approach and vision
- Potential Application for Grid computing:
- Grid-middleware
- Example of Services provided by Grid Systems

# Grid Computing Grid TOP TEN TRENDS 2001

#### DISTRIBUTE THE WEALTH

Distributed computing initiatives.



# Grand Vision of Grid systems

• Flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources



# Grand Vision of Grid Computing

- Grid computing is the use of hundreds, thousands, or millions of geographically and organizationally disperse and diverse resources to solve:
  - ➔ problems that require more computing power than is available from a single machine or from a local area distributed system

# outline

- Grid computing: Approach and vision
- Potential Application for Grid computing:
- Grid-middleware
- Example of Services provided by Grid Systems

# Potential Grid Applications

- An application which requires the grid solution is likely distributed (Distributed Computing) and fit in one of the following paradigms:
  - High throughput Computing
  - High performance Computing

Grid computing will be mainly needed for largescale, high-performance computing.

# **Distributed** Computing

- Distributed computing is a programming model in which processing occurs in many geographically distributed places.
  - Processing can occur wherever it makes the most sense, whether that is on a server, Web site, personal computer, etc.
- Distributed computing and grid computing either
  overlap or distributed computing is a subset of grid computing

From "The Anatomy of the Grid: Enabling Scalable Virtual Organizations" Foster et al

# High Throughput Computing

- HTC employs large amounts of computing power for very lengthy periods
  - HTC is needed for doing sensitivity analyses, parametric studies or simulations to establish statistical confidence.
- The features of HTC are
  - Availability of computing power for a long period of time
  - Efficient fault tolerance mechanism
- The key to HTC in grids
  - Efficiently harness the use of all available resources across organizations.

# High Performance Computing

- HPC brings enormous amounts of computing power to bear over relatively short periods of time.
  - HPC is needed for decision-support or applications under sharp time-constraint, such as weather modeling
- HPC applications are:
  - Large in scale and complex in structure.
  - Real time requirements.
  - Ultimately must run on more than one type of HPC system.

# **HPC/HTC** requirements

- HPC/HTC requires a balance of computation and communication among all resources involved.
  - Managing computation,
  - communication,
  - data locality

# First Generation of Grids: Batch computing

Focus on aggregation of many resources for massively (data-)parallel applications



#### Second Generation Grids: Service-Oriented Science

- Empower many more users by enabling
  On-demand access to services
- Grids become an enabling technology for service oriented science (or business)
  - Grid infrastructures host services
  - Grid technologies used to build services





"Service-Oriented Science", Science, 2005

#### Best of Two Worlds



'Open Grid Services Architecture Evolution, J.P. Prost, IBM Montpellier, France, Ecole Bruide 2004

#### Second Generation Grids: Service-Oriented Science (Transient Service Instances)

- Web services address discovery & invocation of persistent services
  - Interface to persistent state of enterprise
- In Grids, must also support transient service instances, created/destroyed dynamically

- Significant implications for how services are managed, named, discovered, and used

"Globus Toolkit Futures: An Open Grid Services Architecture" Ian Foster et al. Globus Tutorial, Argonne National Laboratory, January 29, 2002

# eScience: Applications that needs the Grid

- "eScience promotes innovation in collaborative, computationally or data intensive research across all disciplines, throughout the research lifecycle'
- Nowadays Scientific Applications are
  - CPU intensive
  - Produce/process Huge sets of Data
  - Requires access to geographically distributed and expensive instruments

#### **Online Access** to Scientific Instruments



From the Grid tutorials available at : http://www.globus.org

# CPU intensive Science: Optimization problem NUG30

- The problem, a quadratic assignment problem (QAP) known as NUG30
  - given a set of n locations and n facilities, the goal is to assign each facility to a location.
  - There are **n!** possible assignments
- NUG30 proposed in 1968 as a test of computer capabilities, but remained unsolved because of its great complexity.



Nug30 Quadratic Assignment Problem Solved by 1,000 https://scout.wisc.edu/archives/r7125



![](_page_19_Figure_0.jpeg)

"VL-e project" UvA

#### The Grid paradigm

Principles and mechanisms for dynamic VOs

Leverage service oriented architecture (SOA)

![](_page_20_Figure_3.jpeg)

# The Grid paradigm and information integration

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

# outline

- Grid computing: Approach and vision
- Potential Application for Grid computing:
- Grid-middleware
- Example of Services provided by Grid Systems

# Grid Middleware Definition

- Software toolkit addressing key technical areas
  - Offer a modular ''bag of technologies''
  - Enable incremental development of grid-enabled tools and applications
  - Define and standardize grid protocols and APIs
- Focus is on inter-domain issues, not clustering
  - Collaborative resource use spanning multiple organizations
  - Integrates cleanly with intra-domain services
  - Creates a collective service layer

# Grid Middleware Definition

- Architecture identifies the fundamental system components, specifies purpose and function of these components, and indicates how these components interact with each other.
- Grid architecture is a protocol architecture, with protocols defining the basic mechanisms by which VO users and resources negotiate, establish, manage and exploit sharing relationships.
- Grid architecture is also a service standard-based open architecture that facilitates extensibility, interoperability, portability and code sharing.

"Introduction to Grid Technology" B.Ramamurthy

#### Architecture

![](_page_27_Figure_1.jpeg)

#### Emergence of Open Grid Standards

![](_page_28_Figure_1.jpeg)

"Grid Computing and Scaling Up the Internet" I. Foster, IPv6 Forum, an Diego, 2003

# outline

- Grid computing: Approach and vision
- Potential Application for Grid computing:
- Grid-middleware
- Example of Services provided by Grid Systems:
  - Authentication, Authorization, Data management, computing resource management

![](_page_30_Figure_0.jpeg)

Resources

![](_page_30_Picture_2.jpeg)

![](_page_31_Figure_0.jpeg)

Globus Toolkit 2.0 Components

# The Four components of a Grid infrastructure

![](_page_32_Figure_1.jpeg)

Figure 1-1 Grid computing key areas

#### Grid Security: Identity

![](_page_33_Picture_1.jpeg)

Rachana Ananthakrishnan

#### Grid Security: Authentication

![](_page_34_Picture_1.jpeg)

Rachana Ananthakrishnan

![](_page_35_Picture_0.jpeg)

![](_page_36_Picture_0.jpeg)

Rachana Ananthakrishnan

![](_page_37_Picture_0.jpeg)

#### Security cross Grid (V.O.)

![](_page_38_Figure_1.jpeg)

Lauroa Pearlman et al. A Community Authorization Service for Group Collaboration

#### Grid data management

![](_page_39_Figure_1.jpeg)

#### A Data selection scenario

![](_page_40_Figure_1.jpeg)

Sudharshan Vazhkudai "Replica Selection in the Globus Data Grid"

# Create Delegated Credential

![](_page_41_Figure_1.jpeg)

## Create Replicator Resource

![](_page_42_Figure_1.jpeg)

## **Monitor Replicator Resource**

![](_page_43_Figure_1.jpeg)

# Query Replica Information

![](_page_44_Figure_1.jpeg)

#### Transfer Data

![](_page_45_Figure_1.jpeg)

### **Register Replica Information**

![](_page_46_Figure_1.jpeg)

## **Client Inspection of State**

![](_page_47_Figure_1.jpeg)

#### **Resource Termination**

![](_page_48_Figure_1.jpeg)

### Grid Resource management

![](_page_49_Figure_1.jpeg)

# Grid Job Scheduling

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

![](_page_50_Figure_3.jpeg)

# **Coordinated Sharing**

- The sharing is controlled by the providers and consumers
  - what is shared?
  - who is allowed to share?
  - and the conditions under which sharing occurs?
- sharing relationships
  - client-server, peer-to-peer, and brokered
  - access control: fine AC, delegation, local/global policies

From "The Anatomy of the Grid: Enabling Scalable Virtual Organizations" Foster et al

# Grid Programming Issues

- Portability, Interoperability, and Adaptability
- Discovery
- Performance
- Fault Tolerance
- Security

# Programming models

- Shared-state models
- Message passing models
- RPC and RMI models
- Hybrid Models
- Peer to Peer Models
- Web Service Models

![](_page_53_Picture_7.jpeg)