
UVA HPC & BIG DATA COURSE

Service oriented Architecture
and Web services

Adam Belloum

Content

•  Service Oriented Architecture
•  Web services

– SOAP Based Web services
– Web Service Reference Framework (WSRF)
– RESTful Web service

The case for developing SOA

•  Level of Software complexity continues to increase, and traditional
architectures seem to be reaching the limit of their ability

•  Need to respond quickly to new requirements of the Application

•  Need to continually reduce the cost of IT for the application

Ability to absorb and integrate new partners,
new users and applications

Problems

•  Cumulative effect of decades of growth and evolution
has produced severe complexity

•  Redundant and non-reusable programming

•  Real integration killer - multiplicity of interfaces

Service Oriented Architecture

•  Leverage existing assets.
–  Existing systems can rarely be thrown away, and often contain

within them great value to the enterprise/search group.

•  Support all required types of integration.
–  User Interaction
–  Application Connectivity
–  Process Integration
–  Information Integration
–  Build to Integrate

Service Oriented Architecture

•  Allow for incremental implementations & migration of assets
àInclude a development environment that will be built

•  around a standard component framework,
•  promote better reuse of modules and systems,
•  allow legacy assets to be migrated to the framework,
•  allow for the timely implementation of new technologies.

•  Allow implementation of new computing models;
–  specifically, new portal-based client models, Grid computing, and

on-demand computing

A service-oriented architecture
-- not just Web services

•  First, it must be understood that Web services does not equal
service-oriented architecture.

•  Web services is a collection of technologies, including HTTP,

XML, SOAP, WSDL, and UDDI,

•  Service Oriented Architecture is "an application architecture
within which all functions are defined as independent services
with well defined invocable interfaces which can be called in
defined sequences to form business processes".

A service-oriented architecture
-- not just Web services

•  All functions are defined as services.
•  All services are independent.

–  Operate as "black boxes";
•  external components neither know nor care how boxes are executed

•  The interfaces are invocable;
–  it is irrelevant whether they are local or remote

•  what interconnect scheme or protocol is used to effect the invocation,
•  what infrastructure components are required to make the connection.

A service-oriented architecture
-- not just Web services

•  Interface is the key, & the focus of the calling application.
–  It defines the required parameters and the nature of the

result

•  It is the system's responsibility to effect and manage the
invocation of the service,

•  This allows two critical characteristics to be realized:
–  Services are truly independent,
–  They can be managed: Security, Deployment, Logging,

Dynamic rerouting, and Maintenance

The Nature of a Service
•  In a business environment

–  Service means business functions & transactions, and system services.
•  In a research environment

–  Service means application functions, and system services

•  The difference in the types of services.
–  Business functions are from the application's perspective, non-system

functions.

–  Services might be low-level or complex high-level (fine-grained or
course grained) functions

SOA Model

•  A service provider
–  provides a service interface for a software asset that manages a specific

set of tasks.

•  A service requester
–  discovers and invokes other software services to provide a business

solution..

•  A service broker

Service Requester

•  Simple client software
•  Aggregator:

- Content Aggregation
•  Activity where an entity interacts with a variety of content providers

to process/reproduce such content in the desired presentation
format of its customers.

- Service Aggregation
•  Activity where an entity interacts with

a variety of service providers to re-
brand, host, or offer a composite of
services to its customers.	
 	

Service Provider
•  Independent software vendors are prime examples

of potential service providers.
–  They own and maintain a software asset that performs tasks.
–  Software assets could be made available as an aggregation of services or

broken down into distinctly separate software service.

•  Processes that are proven and generalized for a
diverse set of applications would be good candidates
for service providers.

•  For	
 example,	
 if	
 a	
 bank	
 felt	
 that	
 its	
 business	
 process	
 for	
 loan	

processing	
 was	
 a	
 strong	
 enough	
 asset	
 to	
 be	
 made	
 publicly	

available	
 and	
 was	
 willing	
 to	
 support	
 it	
 as	
 a	
 business	
 offering,	

then	
 that	
 bank	
 could	
 view	
 itself	
 as	
 a	
 loan	
 processing	
 service	

provider.	

Registry
•  Is an entity that collects and catalogs data about other entity

and then providing that data to others (a form of
Requirement for Service Oriented Architecture Broker.)

•  Usually, a registry would collect data such as
–  Entity name,
–  Description, and contact information.

In UDDI terms, this Registry role is often
referred to as the White Pages.

Web Service

•  The clients (the PCs at the store)
–  contact the Web Service on remote server
–  send a service request asking for the catalog
–  The server returns the catalog through a service

response.

•  This is a very sketchy example of how a Web Service
works

12 Steps to implement a Service
Oriented Architecture

1.  Understand the functional objectives and define success.

2.  Define your problem domain.

3.  Understand all application semantics in your domain.

4.  Understand all services available in your domain.

5.  Understand all information sources and sinks available in
your domain.

6.  Understand all processes in your domain.

12 Steps to implement a Service
Oriented Architecture

7.  Identify and catalog all interfaces outside of the domain
you must leverage (services and simple information).

8.  Define new services/information bound to the services.

9.  Define new processes, services, and information bound to the
processes.

10.  Select your technology set.

11.  Implement & Deploy SOA technology.

12.  Test and evaluate

Content

•  Service Oriented Architecture
•  Web services

– SOAP Based Web services
– RESTful Web service

•  Example of usage of Web Service in Scientific
applications

Web Services have certain advantages over
other technologies

 what makes Web Services special?

•  Web Services are platform-independent and language-
independent

•  Web Services use HTTP for transmitting messages (such as the
service request and response).

Enabling technologies
•  XML: The Extensible Markup Language

•  SOAP:
–  Simple Object Access Protocol is an XML-based

lightweight protocol for the exchange of information in a
decentralized,

•  WSDL:
–  The Web Services Description Language is an XML

vocabulary that provides a standard way of describing
service IDLs.

•  UDDI:
–  The Universal Description, Discovery, and Integration

specification provides a common set of SOAP APIs that
enable the implementation of a service broker.

Web Services also have some disadvantages

•  Overhead. Transmitting all data in XML is not as efficient as
using a proprietary binary code.

–  What you win in portability, you lose in efficiency.
–  This overhead is usually acceptable for most applications, but you will probably never find a

critical real-time application that uses Web Services.

•  Lack of versatility. Currently, Web Services are not very
versatile, since they only allow for some very basic forms of
service invocation.

–  Do not offer a standardized support for persistency, notifications, lifecycle management,
transactions, etc.

One important characteristic that distinguishes
Web Services

•  While technologies such as CORBA and EJB are
oriented toward highly coupled distributed systems,
where the client and the server are very
dependent on each other

•  Web Services are oriented towards loosely coupled
systems, where the client might have no prior
knowledge of the Web Service until it actually
invokes it.

A Typical Web Service Invocation

1.  First step will be to find a Web Service that meets our
requirements: contact a UDDI registry.

2.  The UDDI registry will reply, telling what servers can
provide the service required.

3.  the location of a Web Service is now known, but the
actually invocation method is still unknown. The second step
is to ask the Web Service to describe itself

4.  The Web Service replies using WSDL.

5.  The Web Service is located and invocation method is
known. The invocation is done using SOAP (a SOAP request
is sent asking for the needed information.

6.  The Web Service will reply with a SOAP response which
includes the information we asked for, or an error message
if our SOAP request was incorrect

Web Services Addressing

•  At one point, the UDDI registry tells the client where the
Web Service is located. But, how exactly are Web Services
addressed?

–  The answer is very simple: just like web pages. We use plain and simple URIs (Uniform
Resource Identifiers). For example, the UDDI registry might have replied with the
following URI:

http://webservices.mysite.com/weather/us/WeatherService

•  This could easily be the address of a web page.
–  However, remember that Web Services are always used by software (never directly by

humans).

–  When you have a Web Service URI, you will usually need to give that URI to a program.

Interface

Web
Service

message

message

Invoking a Web Service

address

Endpoint
Reference

Run-time environment

Dr. Daniel Sabbah “Bringing Grid & Web Services Together”, IBM Software Group

WS-Addressing

What a Web Service Application Looks Like

6. The application receives the result of the Web Service invocation 5. The SOAP response is sent over a network using the HTTP protocol.
•  The client stub receives the SOAP response and turns it into something

the client application can understand.

4. The result of the requested operation is handed to the server stub,
which turns it into a SOAP response.

3. The service implementation receives the request from the service
stub, and carries out the work it has been asked to do.

2. The SOAP request is sent over a network using the HTTP protocol.
•  WS container receives the SOAP requests & hands it to the server stub.
•  The server stub converts the SOAP request into something the service

implementation can understand

1.  Client application invoke the Web Service, by calling the client stub.
•  The client stub will turn this 'local invocation' into a proper SOAP

request.

What a Web Service Application Looks Like

1.  Client application invoke the Web Service, by calling the client stub.
•  The client stub will turn this 'local invocation' into a proper SOAP request.

2.  The SOAP request is sent over a network using the HTTP protocol.
•  WS container receives the SOAP requests & hands it to the server stub.
•  The server stub converts the SOAP request into something the service implementation can understand

3.  The service implementation receives the request from the service stub, and carries out the work it has
been asked to do.

4.  The result of the requested operation is handed to the server stub, which turns it into a SOAP response.

5.  The SOAP response is sent over a network using the HTTP protocol.
•  The client stub receives the SOAP response and turns it into something the client application can understand.

6.  The application receives the result of the Web Service invocation

What do we need to create a Web service?

•  Web Services programmers usually never write a single line of SOAP.

–  Once we've reached a point where the client application needs to invoke a Web
Service, we delegate that task on a piece of software called a stub.

–  There are plenty of tools available that will generate stubs automatically, based on
the WSDL description of the Web Service.

•  A Web Services client doesn't usually do all those steps in a single invocation. A
more correct sequence of events would be the following:

1.  We locate a Web Service that meets our requirements through UDDI.
2.  We obtain that Web Service's WSDL description.
3.  We generate the stubs once, and include them in our application.
4.  The application uses the stubs each time it needs to invoke the Web Service.

•  Service Oriented Architecture
•  Web services

– SOAP Based Web services
– RESTful Web service

•  Usage of Web Service in Scientific applications

Run-time environment

Web Service and State (WSRF)

•  A WS-Resource is defined as the
composition of a Web service and a
S-Resource
–  Expressed as an association of an XML

document with defined type with a Web
services portType

–  Addressed and accessed according to
the conventional use of WS-Addressing
endpoint references

contex
t

resource

S-­‐Resource	
 iden%fier	
 is	
 encapsulated	
 in	
 an	
 endpoint	
 reference	
 to	
 iden@fy	
 the	
 S-­‐Resource	

to	
 be	
 used	
 in	
 the	
 execu@on	
 of	
 a	
 Web	
 service	
 message	
 exchange.	

Interface
Web

Service

Dr. Daniel Sabbah “Bringing Grid & Web Services Together”, IBM Software Group

What is REST

•  REST stands for Representational State Transfer.

•  REST was coined by Roy Fielding in 2000 in his
Ph.D. dissertation to describe a design pattern for
implementing networked systems.

•  In many ways, the World Wide Web itself, based on
HTTP, can be viewed as a REST-based architecture

[1]	
 hEp://www.ics.uci.edu/~fielding/pubs/disserta@on/top.htm	

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

Why is it called ���
"Representational State Transfer? "

Resource	
 Client	

hEp://www.boeing.com/aircraM/747	

Boeing747.html	

•  The Client references a Web resource using a URL.
•  A representation of the resource is returned (in this case as an HTML).
•  The representation (e.g., Boeing747.html) places the client in a new state.
When the client selects a hyperlink in Boeing747.html, it accesses another resource.
The new representation places the client application into yet another state.
Thus, the client application transfers state with each resource representation.

Fuel	
 requirements	

Maintenance	
 schedule	

...	

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

Representational State Transfer

"Representational State Transfer is intended to evoke an
image of how a well-designed Web application behaves:
 a network of web pages (a virtual state-machine), where
the user progresses through an application by selecting
links (state transitions), resulting in the next page
(representing the next state of the application) being
transferred to the user and rendered for their use."

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐	
 Roy	
 Fielding	

REST - Not a Standard
•  REST is NOT a standard

–  You will not see the W3C putting out a REST specification.
–  You will not see IBM or Microsoft or Sun selling a REST developer's

toolkit.
•  REST is just a design pattern

–  You can only understand it and design your Web services to it.
•  REST does prescribe the use of standards:

–  HTTP
–  URL
–  XML/HTML/GIF/JPEG/etc. (Resource Representations)
–  text/xml, text/html, image/gif, image/jpeg, etc. (Resource Types, MIME

Types)

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

REST Fundamentals

1.  Create a resource for every service.
2.  Identify each resource using a URL.
3.  The data that a Web service returns should

link to other data.

Thus, design your data as a network of
information.

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

Parts Depot Web Services

•  Parts Depot, Inc has deployed some web
services to enable its customers to:
– get a list of parts
– get detailed information about a particular part
–  submit a Purchase Order (PO)

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

The	
 REST	
 way	
 of	
 Designing	
 the	

Web	
 Services	

W
eb

	
 S
er
ve
r	

HTTP	
 POST	
 URL	
 3	
 PO	

(HTML/XML)	

HTTP	
 GET	
 request	
 URL	
 1	

HTTP	
 response	
 URL	
 to	
 submiEed	
 PO	

Parts	

List	

Part	

Data	

PO	

HTTP	
 response	
 Response	

(HTML/XML	
 doc)	

HTTP	
 response	
 Response	

(HTML/XML	
 doc)	

HTTP	
 GET	
 request	
 URL	
 2	

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

Web	
 Service	
 for	
 Clients	
 to	

Retrieve	
 a	
 List	
 of	
 Parts	

Service: Get a list of parts
– The web service makes available a URL to

a parts list resource. A client uses this
URL to get the parts list:
http://www.parts-depot.com/parts

Note that how the web service generates the parts
list is completely transparent to the client. This is
loose coupling. Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

Data Returned - Parts List

<?xml	
 version="1.0"?>	

<Parts>	

	
 	
 	
 	
 	
 	
 <Part	
 id="00345"	
 href="h6p://www.parts-­‐depot.com/parts/00345"/>	

	
 	
 	
 	
 	
 	
 <Part	
 id="00346"	
 href="h6p://www.parts-­‐depot.com/parts/00346"/>	

	
 	
 	
 	
 	
 	
 <Part	
 id="00347"	
 href="h6p://www.parts-­‐depot.com/parts/00347"/>	

	
 	
 	
 	
 	
 	
 <Part	
 id="00348"	
 href="h6p://www.parts-­‐depot.com/parts/00348"/>	

</Parts>	

Note	
 that	
 the	
 parts	
 list	
 has	
 links	
 to	
 get	
 detailed	
 info	
 about	
 each	
 part.	

	
 	

à	
 This	
 is	
 a	
 key	
 feature	
 of	
 the	
 REST	
 design	
 paEern.	
 	
 The	
 client	
 transfers	
 	

from	
 one	
 state	
 to	
 the	
 next	
 by	
 examining	
 and	
 choosing	
 from	
 among	
 	

the	
 alterna@ve	
 URLs	
 in	
 the	
 response	
 document.	

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

The REST Design Pattern (cont.)

All interactions between a client and a web
service are done with simple operations.
•  Most web interactions are done using HTTP

and just four operations:
–  retrieve information (HTTP GET)
– create information (HTTP PUT)
– update information (HTTP POST)
– delete information (HTTP DELETE)

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

The REST Design Pattern (cont.)

•  Web components (firewalls, routers, caches) make
their decisions based upon information in the HTTP
Header.

•  Consequently, the destination URL MUST be placed
in the HTTP header for Web components to operate
effectively.
–  Conversely, it is anti-REST if the HTTP header just identifies

an intermediate destination and the payload identifies the
final destination.

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

Question

What if I have a complex query?

For example:
Show me all parts whose unit cost is under $0.50
and for which the quantity is less than 10

How would you do that with a simple URL?

Roger	
 l.	
 Costello,	
 Timothy	
 D.	
 kehoe	

Answer

For complex queries, Parts Depot will provide a service (resource)
for a client to retrieve a form that the client then fills in.

When the client hits "Submit" the browser will gather up the
client’s responses and generate a URL based on the responses.

Thus, oftentimes the client doesn't generate the URL
(think about using Amazon - you start by entering the URL to
amazon.com; from then on you simply fill in forms, and the
URLs are automatically created for you).

Real REST Examples

•  Twitter has a REST API
– https://dev.twitter.com/docs/api

•  Flickr
– http://www.flickr.com/services/api/

•  Amazon.com offer several REST services, e.g.,
for their S3 storage solution

hEp://rest.elkstein.org/2008/02/real-­‐rest-­‐examples.html	

Twitter has a REST API

SOAP vs REST

Content

•  Service Oriented Architecture
•  Web services

– SOAP Based Web services
– RESTful Web service

•  Example of usage of Web Service in Scientific
applications

Usage of Web Services in e-science

•  In service orchestration, all data is passed to the workflow engine before
delivered to a consuming WS

•  Data transfers are made through SOAP, which is unfit for large data transfers

Enabling	
 web	
 services	
 to	
 consume	
 and	
 produce	
 large	
 distributed	
 datasets	
 Spiros	
 Koulouzis,	
 Reginald	
 Cushing,	

Konstan6nos	
 Karasavvas,	
 Adam	
 Belloum,	
 Marian	
 Bubak	
 to	
 be	
 published	
 JAN/FEB,	
 	
 IEEE	
 Internet	
 Compu6ng,	
 2012	

ProxyWS

•  uses multitude of protocols to transport large data
–  used as an interface for developing WSs able to stream data.
–  Or as enabler for legacy web services to stretch their current potential by referencing data

that would otherwise be delivered via SOAP

Enabling	
 web	
 services	
 to	
 consume	
 and	
 produce	
 large	
 distributed	
 datasets	
 Spiros	
 Koulouzis,	
 Reginald	
 Cushing,	

Konstan6nos	
 Karasavvas,	
 Adam	
 Belloum,	
 Marian	
 Bubak	
 to	
 be	
 published	
 JAN/FEB,	
 	
 IEEE	
 Internet	
 Compu6ng,	
 2012	

Indexing Name Entry Recognition

•  AIDA provides a set of components which
enable the indexing of text documents in
various formats.

•  AIDA's Indexer component, called
IndexerWS is a WS able to index document
with the use of the Streaming library.

Results Indexing Web Services for
Information Retrieval (NER)

Enabling	
 web	
 services	
 to	
 consume	
 and	
 produce	
 large	
 distributed	
 datasets	
 Spiros	
 Koulouzis,	
 Reginald	
 Cushing,	

Konstan6nos	
 Karasavvas,	
 Adam	
 Belloum,	
 Marian	
 Bubak	
 to	
 be	
 published	
 JAN/FEB,	
 	
 IEEE	
 Internet	
 Compu6ng,	
 2012	

