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A Data-Parallel Approach

Restrict the programming interface so that the system can do more 
automatically. Use ideas from functional programming: 

“Here is a function, apply it to all of the data” 

• I do not care where it runs (the system should handle that) 

• Feel free to run it twice on different nodes (no side effects!)



MapReduce Programming Model
Map function: (K1, V1) —> list(K2, V2) 

Reduce function: (K2, list(V2)) —> list(K3, V3)



Problems with MapReduce

• Difficulty to convert problem to MR algorithm:  
MR not expressive enough? 

• Performance issues due to disk I/O between every job:  
Unsuited for iterative algorithms or interactive use



Higher Level Frameworks



Specialized systems

http://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

http://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark


Solved?

• Performance issues solved only partially 

• How about workflows that need multiple components?  



Enter Spark



Spark’s approach

• General purpose processing framework for DAG’s 

• Fast data sharing 

• Idiomatic API (if you know Scala)



Spark ecosystem



https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf



RDD properties

• Collection of objects/elements 

• Spread over many machines 

• Built through parallel transformations 

• Immutable



RDD origins

There are two ways to create a RDD from scratch 

Parallelised collections:  
distribute existing single-machine collections (List, HashMap) 

Hadoop datasets:  
files from HDFS-compatible filesystem (Hadoop InputFormat)



Operations on RDDs
Transformations: 
• Lazily computed 
• Create new RDD 
• Example: ‘map’ 

Actions: 
• Triggers computation 
• Example: ‘count’, ‘saveAsTextFile’  



An RDD from HDFS
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rdd.flatMap(lambda s: s.split(" "))
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Transformations
RDD’s are created from other RDD’s using transformations: 

map(f) => pass every element through function f 

reduceByKey(f) => aggregate values with same key using f 



Transformations
RDD’s are created from other RDD’s using transformations: 

map(f) => pass every element through function f 

reduceByKey(f) => aggregate values with same key using f 

filter(f) => select elements for which function f is true 

flatMap(f) => similar to map, but one-to-many  

join(r) => joined dataset with RDD r 

union(r) => union with RDD r 

sample, intersection, distinct, groupByKey, sortByKey, cartesian…  



Actions
Transformations give no output (no side-effects) 
and don’t result in any real work (laziness) 

Results from RDD’s via actions: 

count() => return the number of elements 
take(n) => select the first n elements 
saveAsTextFile(file) => store dataset as file



Lineage, laziness & persistence

• Spark stores lineage information for every RDD partition 

• Intermediate RDDs are computed only when needed 

• By default RDDs are not retained in memory  
— use the cache/persist methods on ‘hot’ RDDs







PairRDDs

RDDs of (key, value) tuples are ‘special’ 

A number of transformations only for PairRDDs: 

• reduceByKey, groupByKey 

• join, cogroup



Spark: a general framework
Spark aims to generalize MapReduce to support new applications with a more 
efficient engine, and simpler for the end users.  

Write programs in terms of distributed datasets and operations on them 

Accessible from multiple programming languages: 

• Scala 

• Java 

• Python 

• R (only via dataframes)





An Executing Application



Shared variables

• In general: avoid! 

• When needed: read-only 

• Two helpful types:  
broadcast variables, accumulators



Broadcast variables
• Wrapper around an object 

• Copy send once to every worker 

• Use case: lookup-table 

• Should fit in the main memory of a single worker 

• Can only be used read-only



Accumulators

• Special variable to which workers can only “add” 

• Only the driver can read 

• Similar to MapReduce counters



RDD limitations

• Reading structured data sources (schema) 

• Tuple juggling 
 
([a, b, c]) => (a, [a, b, c]) => (c, [a, b, c]) etc 

• Flexibility hinders optimiser



SparkSQL & DataFrames

• Inspiration from SQL & Pandas 

• Columnar data representation 

• Automatically reading data in Avro, CSV, JSON, .. format 

• Easy conversion from/to RDD’s



DataFrame performance

https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html

https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html


Discretized Streams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Spark Streaming

Spark uses microbatches to get close to real-time performance 
Intervals for batch creation can be set

http://spark.apache.org/docs/latest/streaming-programming-guide.html

http://spark.apache.org/docs/latest/streaming-programming-guide.html


Streaming data sources
• Kafka 

• Flume 

• HDFS/S3 

• Kinesis 

• Twitter 

• TCP socket 

• Pluggable interface, write your own



Machine Learning Library (MLlib)
Common machine learning algorithms on top of Spark: 

• classification: SVM, naive Bayes 

• regression: logistic regression, decision trees, isotonic regression  

• clustering: K-means, PIC, LDA 

• collaborative filtering: alternating least squares 

• dimensionality reduction: SVD, PCA



Deployment

• Stand-alone cluster 

• On cluster scheduler (YARN / Mesos) 

• Local, single machine  
(easy way to get started: docker-stacks)



Usage
• Interactive shell: 

• spark-shell (Scala) 

• pyspark (Python) 

• Notebook 

• Standalone application 

• spark-submit <jar> / <py>



Distributed data store



Summary

• Spark replaces MapReduce 

• RDDs enable fast distributed data processing 

• Learn Scala



Intermezzo
    There are only two hard things in Computer Science: 

cache invalidation and naming things. 

    -- Phil Karlton 

https://pixelastic.github.io/pokemonorbigdata/


