

Apache Spark

28-01-2016 Jeroen Schot - jeroen.schot@surfsara.nl Mathijs Kattenberg - <u>mathijs.kattenberg@surfsara.nl</u> Machiel Jansen - machiel.jansen@surfsara.nl

A Data-Parallel Approach

automatically. Use ideas from functional programming:

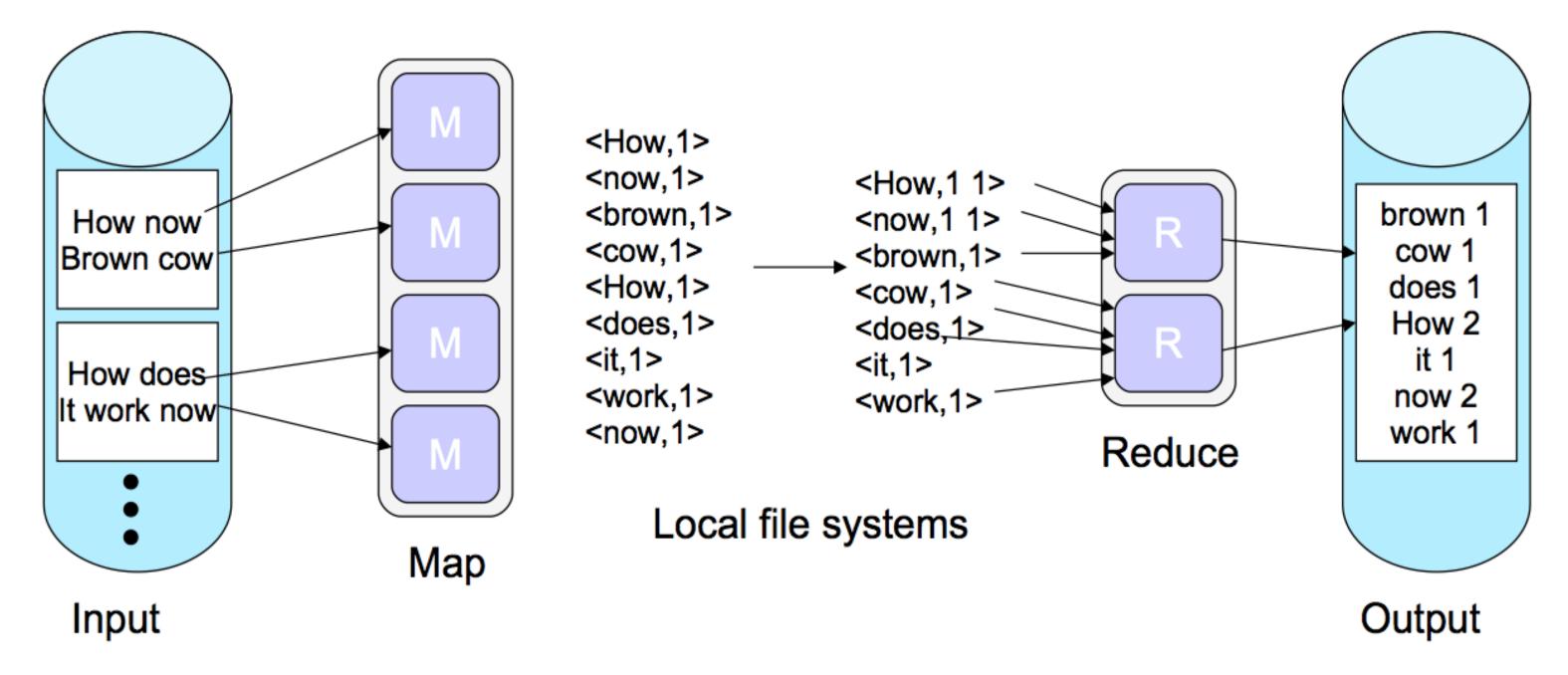
"Here is a function, apply it to all of the data"

- I do not care where it runs (the system should handle that)
- Feel free to run it twice on different nodes (no side effects!)

- Restrict the programming interface so that the system can do more

MapReduce Programming Model Map function: $(K_1, V_1) \longrightarrow list(K_2, V_2)$

Reduce function: $(K_2, list(V_2)) \longrightarrow list(K_3, V_3)$



Distributed file system

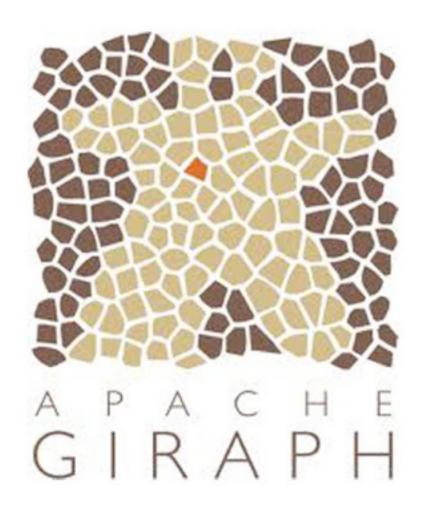
Distributed file system

Problems with MapReduce

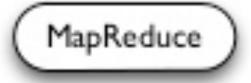
- Difficulty to convert problem to MR algorithm: MR not expressive enough?
- Performance issues due to disk I/O between every job: Unsuited for iterative algorithms or interactive use

Higher Level Frameworks

cascading

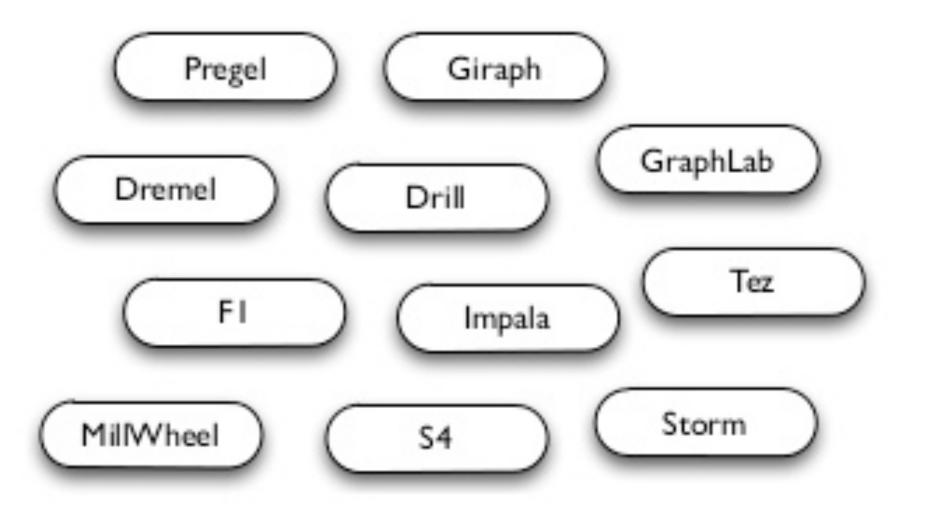


Specialized systems



General Batch Processing

http://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

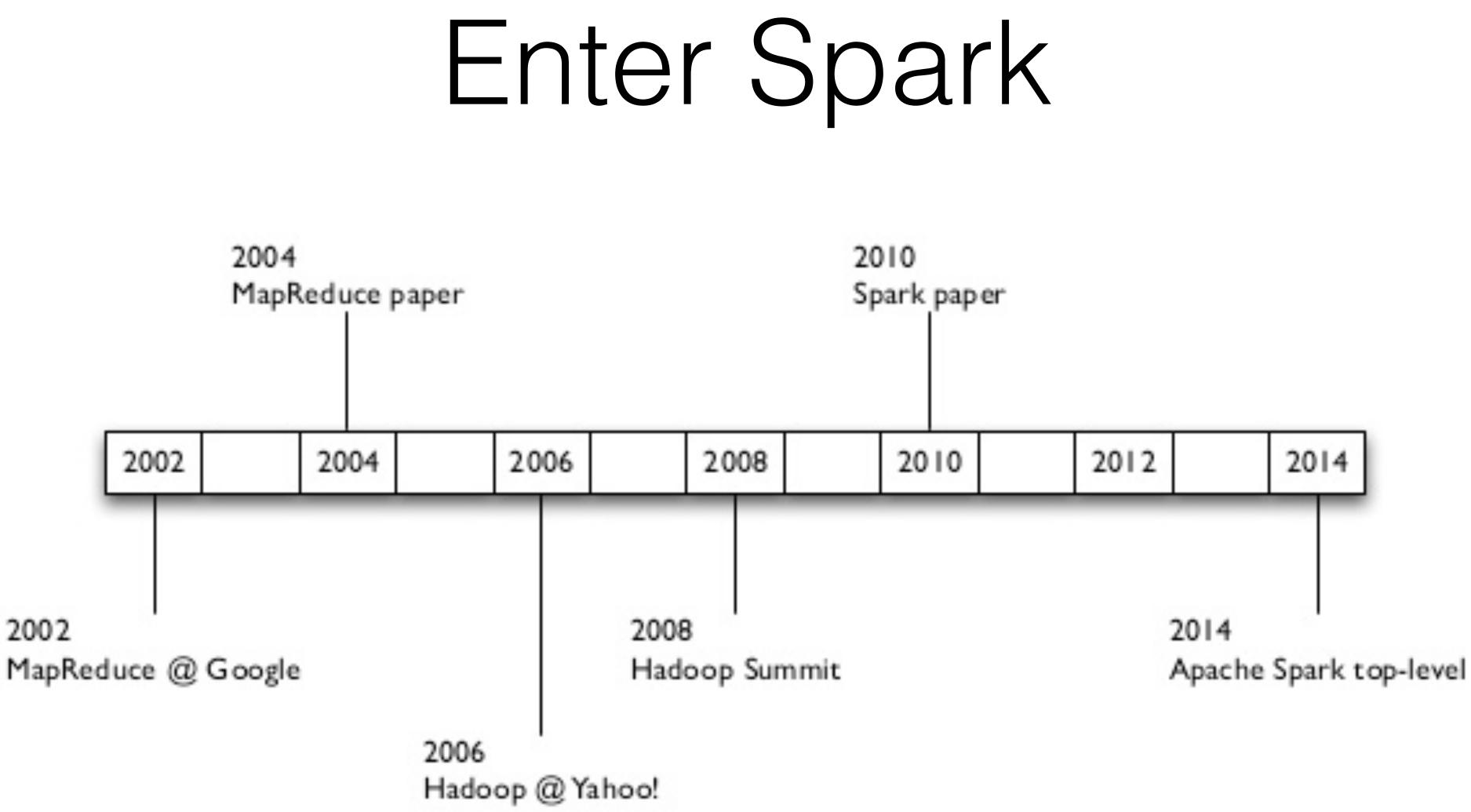


Specialized Systems:

iterative, interactive, streaming, graph, etc.

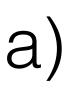
- Performance issues solved only partially
- How about workflows that need multiple components?

Solved?



- General purpose processing framework for DAG's
- Fast data sharing
- Idiomatic API (if you know Scala)

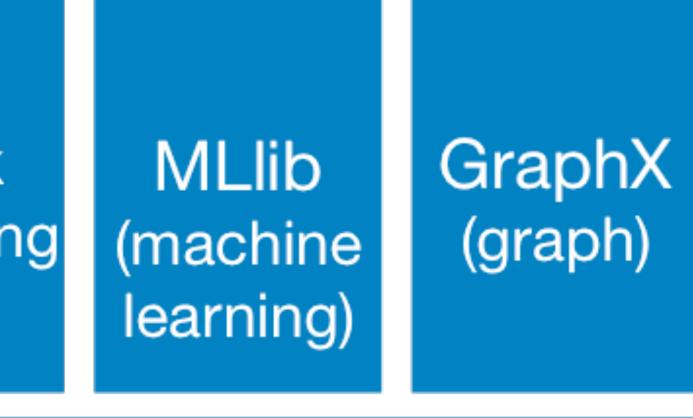
Spark's approach



Spark ecosystem

Spark SQL

Spark Streaming



Apache Spark

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a distributed memory abstraction that lets programmers perform in-memory computations on large clusters in a fault-tolerant manner. RDDs are motivated by two types of applications that current computing frameworks handle inefficiently: iterative algorithms and interactive data mining tools. In both cases, keeping data in memory can improve performance by an order of magnitude. To achieve fault tolerance efficiently, RDDs provide a restricted form of shared memory, based on coarse-

https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

tion, which can dominate application execution times.

Recognizing this problem, researchers have developed specialized frameworks for some applications that require data reuse. For example, Pregel [22] is a system for iterative graph computations that keeps intermediate data in memory, while HaLoop [7] offers an iterative MapReduce interface. However, these frameworks only support specific computation patterns (*e.g.*, looping a series of MapReduce steps), and perform data sharing implicitly for these patterns. They do not provide abstractions for more general reuse, *e.g.*, to let a user load several datasets

RDD properties

- Collection of objects/elements
- Spread over many machines
- Built through parallel transformations
- Immutable

There are two ways to create a RDD from scratch

Parallelised collections: distribute existing single-machine collections (List, HashMap)

Hadoop datasets: files from HDFS-compatible filesystem (Hadoop InputFormat)

RDD origins

Operations on RDDs

Transformations:

- Lazily computed
- Create new RDD
- Example: 'map'

Actions:

- Triggers computation
- Example: 'count', 'saveAsTextFile'

RA	Μ	Ho	st A

mary had a	and everywhere
little lamb	that mary went
its fleece was	the lamb was
white as snow	sure to go
HDFS	HDFS

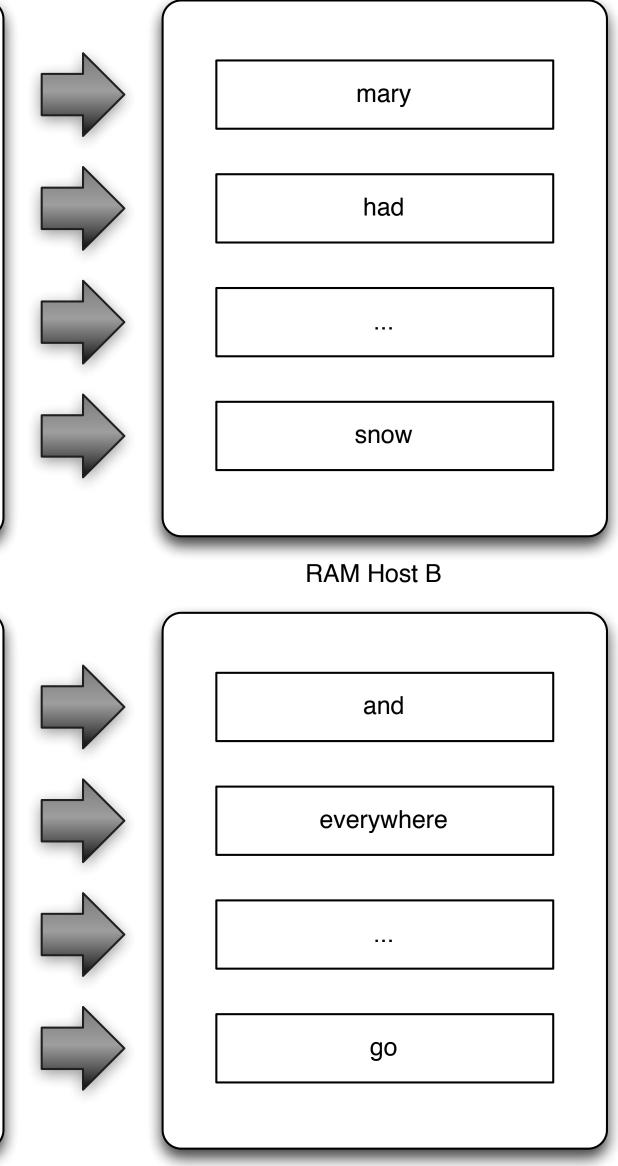
An RDD from HDFS

RAM Host B

RAM Host A

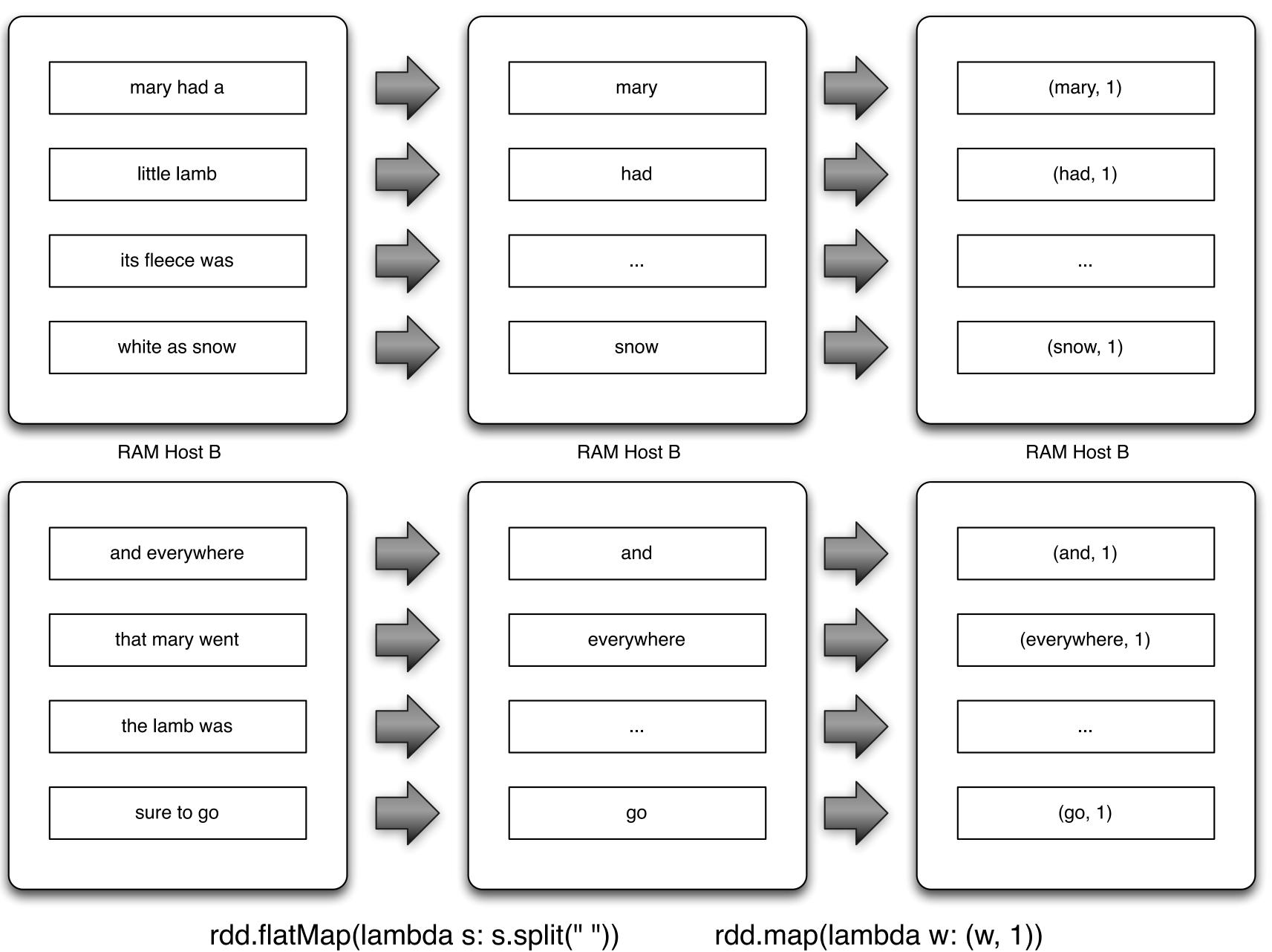
-		_	
	mary had a		
	little lamb		
	its fleece was		
	white as snow		
	RAM Host B		
		_	
	and everywhere		
	and everywhere		
	and everywhere		
	and everywhere that mary went		
	and everywhere that mary went		
	and everywhere that mary went the lamb was		

rdd.flatMap(lambda s: s.split(" "))



RAM Host A

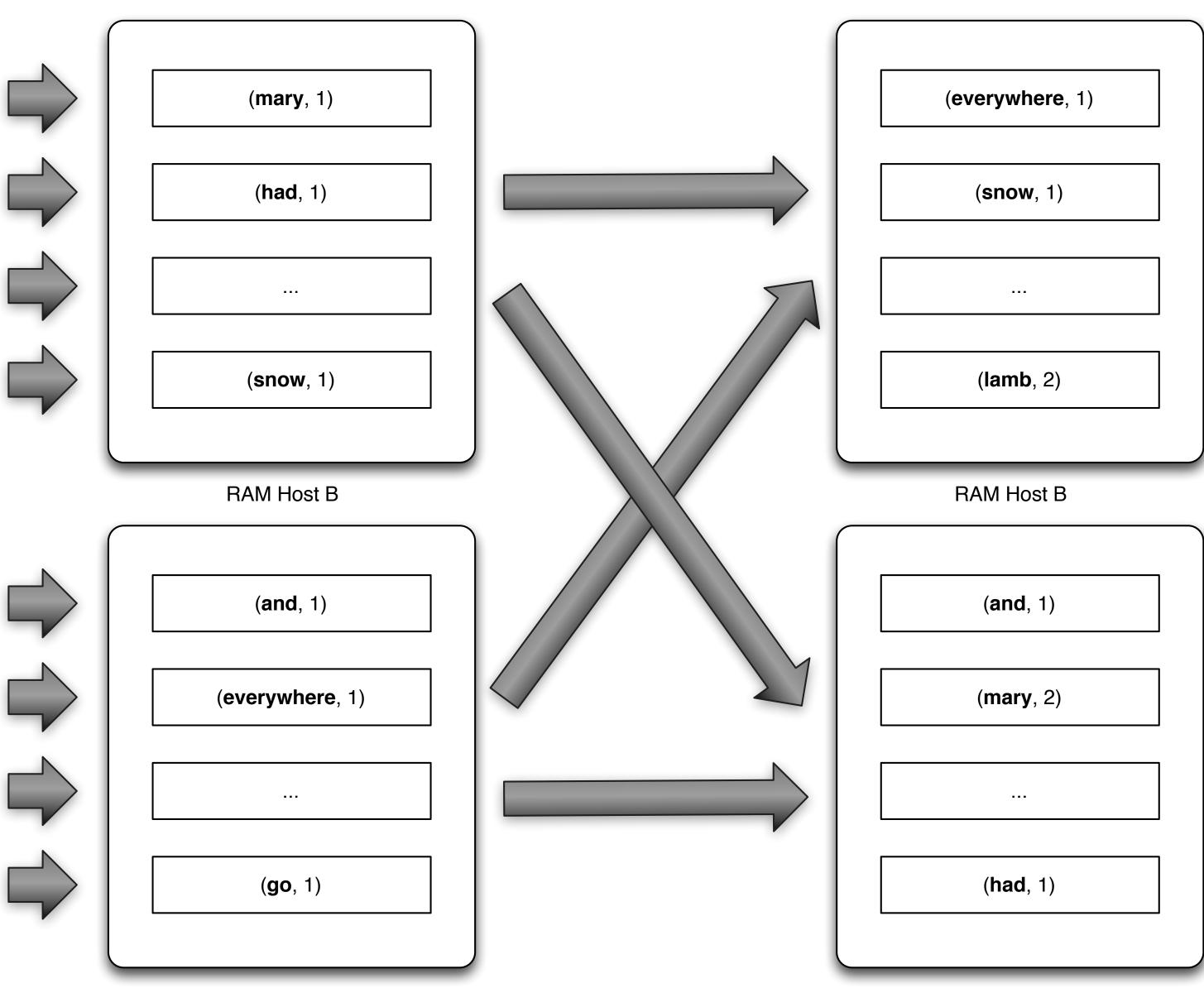
RAM Host A



rdd.flatMap(lambda s: s.split(" "))

RAM Host A

RAM	Host	Α
-----	------	---



rdd.reduceByKey(lambda x, y: x + y)

RAM Host A

Transformations

- RDD's are created from other RDD's using transformations:
- map(f) = pass every element through function f
- reduceByKey(f) => aggregate values with same key using f

Transformations

RDD's are created from other RDD's using transformations:

map(f) = pass every element through function freduceByKey(f) => aggregate values with same key using ffilter(f) => select elements for which function f is true flatMap(f) => similar to map, but one-to-manyjoin(r) => joined dataset with RDD runion(r) => union with RDD rsample, intersection, distinct, groupByKey, sortByKey, cartesian...

Actions

Transformations give no output (no side-effects) and don't result in any real work (laziness)

Results from RDD's via actions:

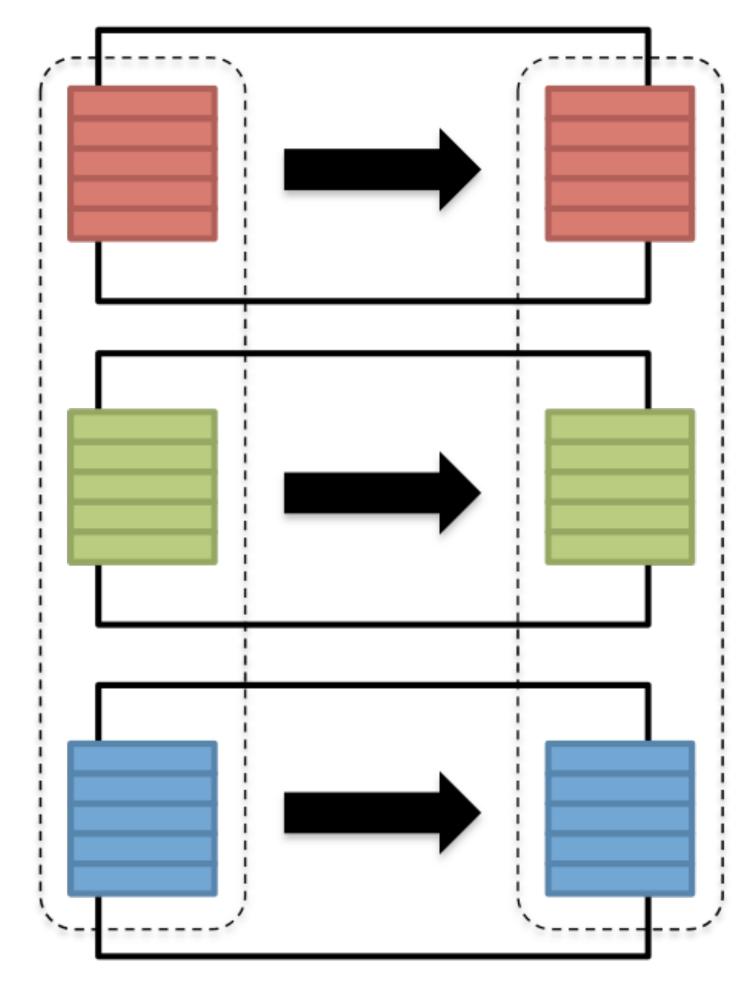
count() = return the number of elementstake(n) = select the first n elementssaveAsTextFile(file) => store dataset as file

Lineage, laziness & persistence

- Spark stores lineage information for every RDD partition
- Intermediate RDDs are computed only when needed
- By default RDDs are not retained in memory — use the cache/persist methods on 'hot' RDDs

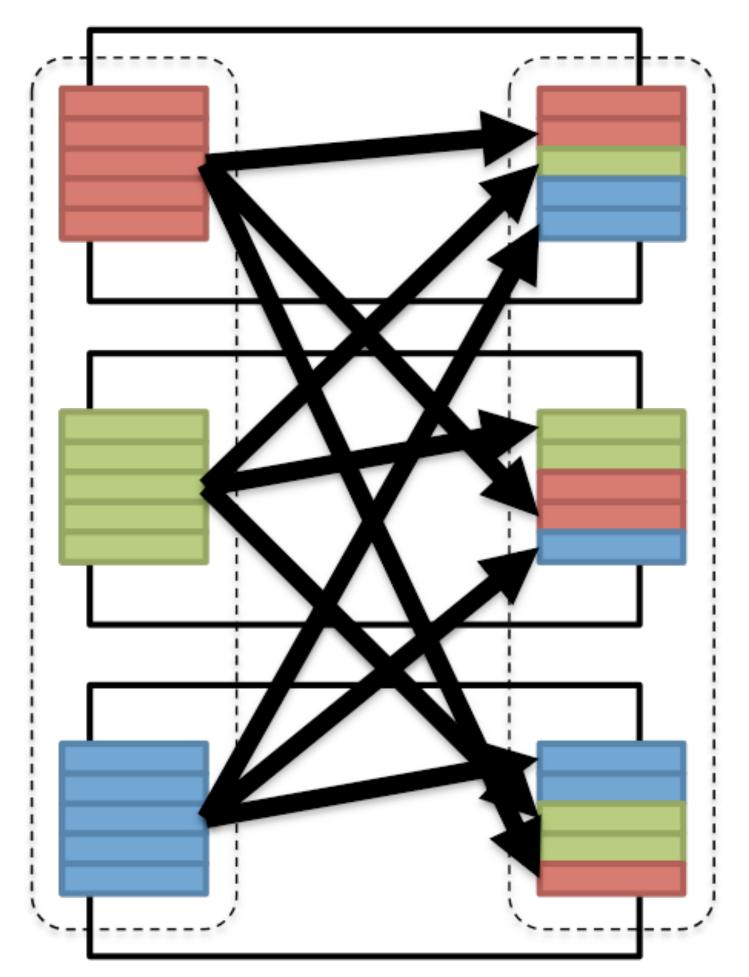
Narrow transformation

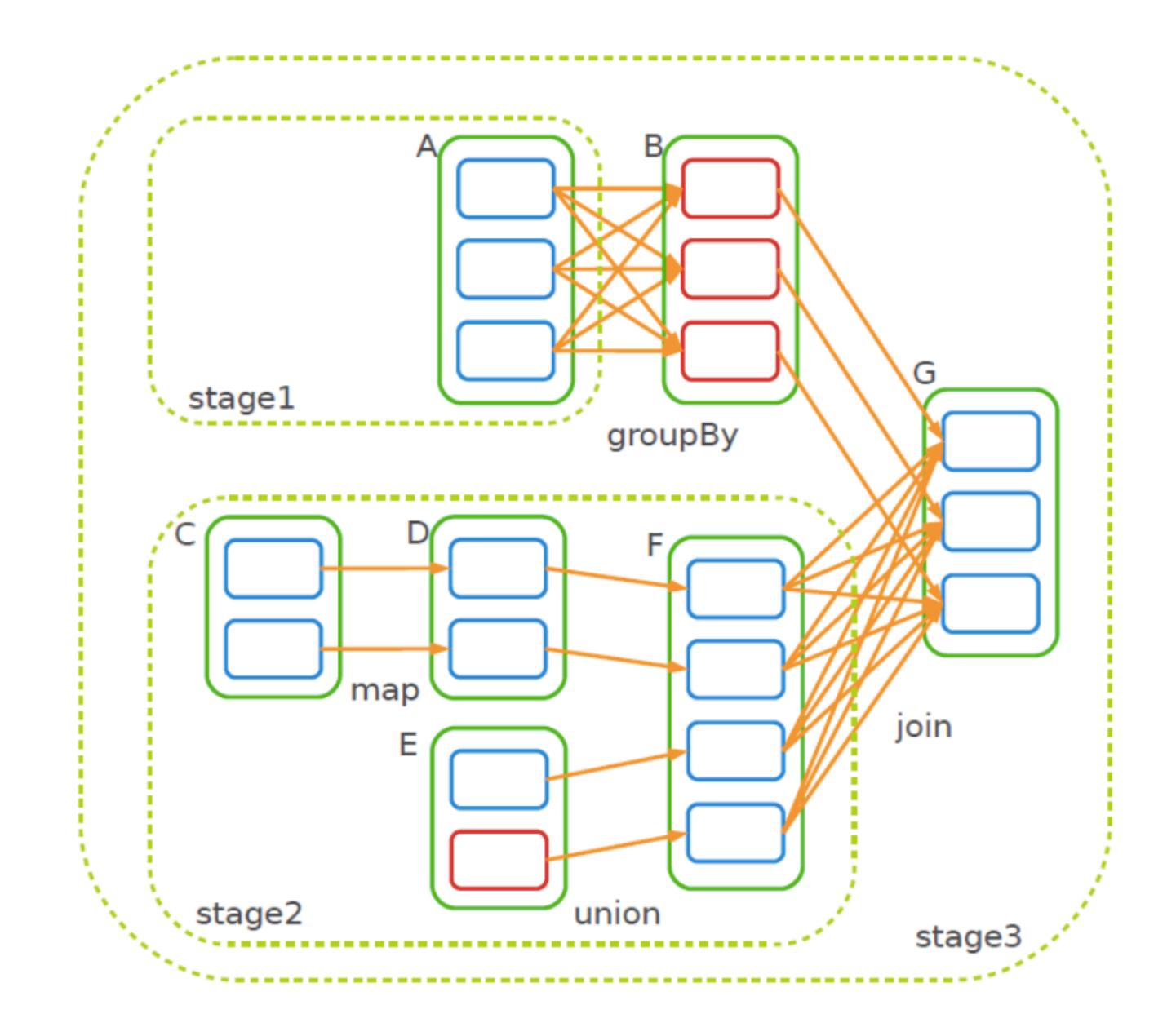
- Input and output stays in same ٠ partition
- No data movement is needed ٠



Wide transformation

- Input from other partitions are required ٠
- Data shuffling is needed before ٠ processing





PairRDDs

RDDs of (key, value) tuples are 'special'

A number of transformations only for PairRDDs:

- reduceByKey, groupByKey
- join, cogroup

Spark: a general framework

Spark aims to generalize MapReduce to support new applications with a more efficient engine, and simpler for the end users.

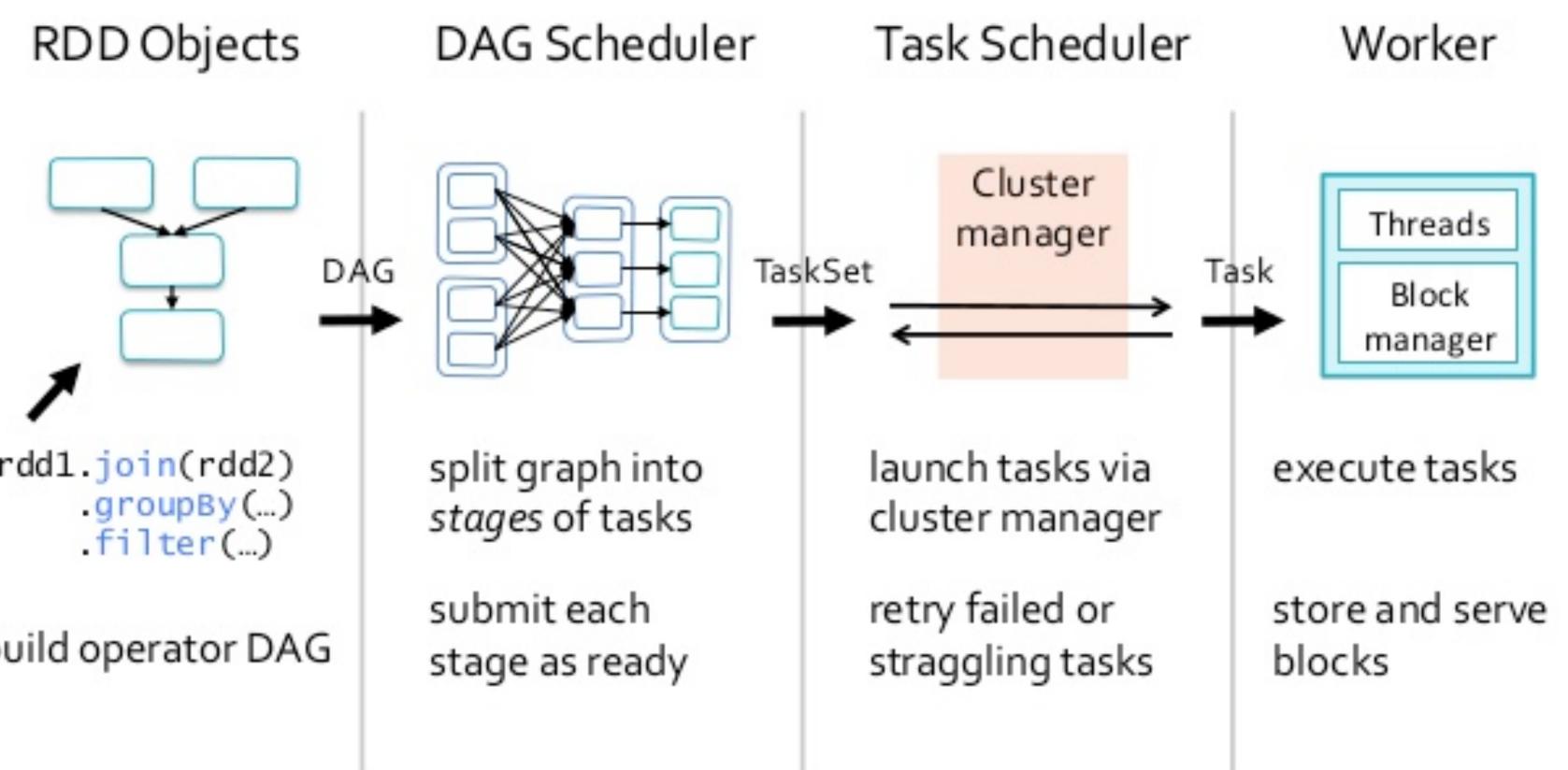
Write programs in terms of distributed datasets and operations on them

Accessible from multiple programming languages:

- Scala • Scala Java • Java
- Python

- python"
- R (only via dataframes)

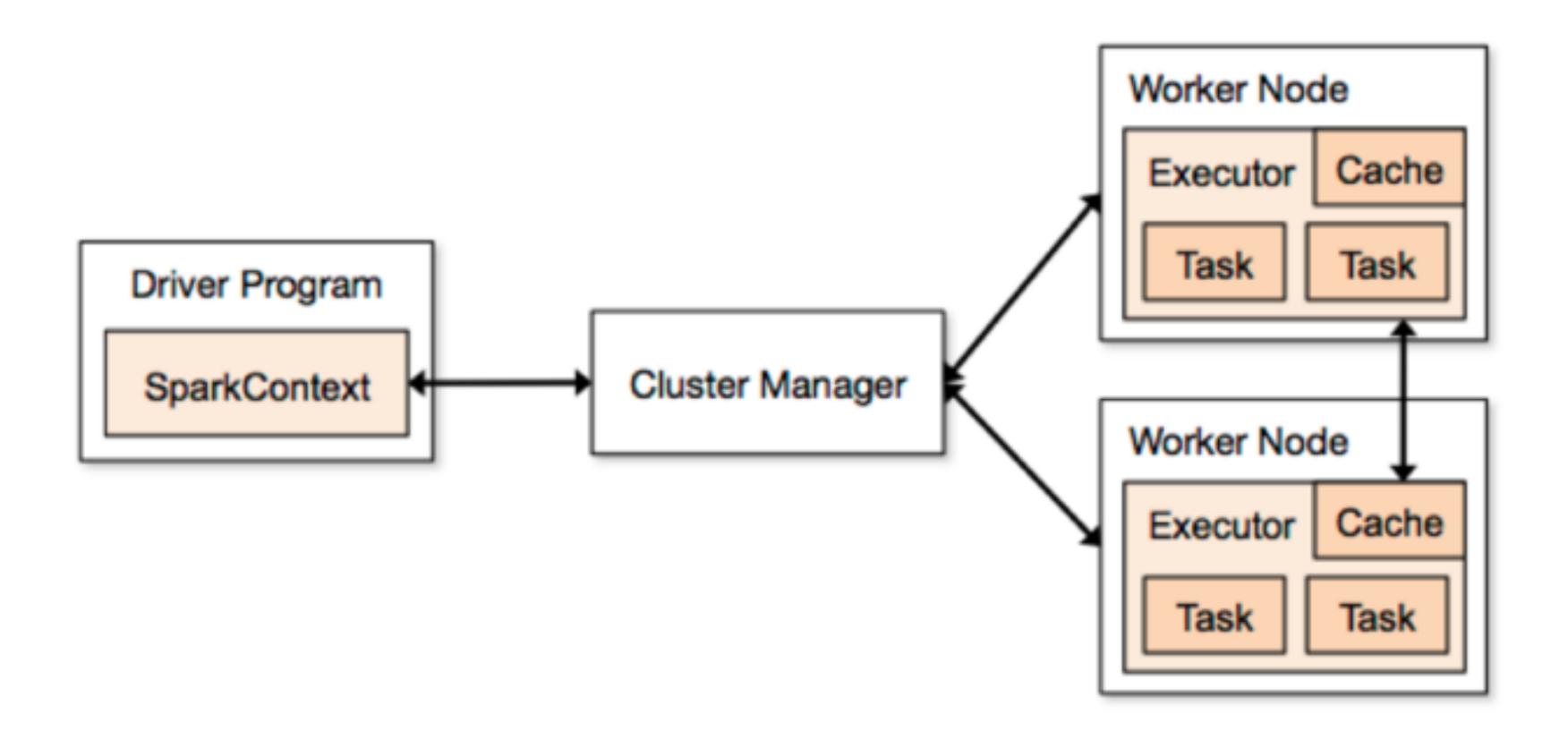
Execution Process



rdd1.join(rdd2)

build operator DAG

An Executing Application



- In general: avoid!
- When needed: read-only
- Two helpful types: broadcast variables, accumulators

Shared variables

Broadcast variables

- Wrapper around an object
- Copy send once to every worker
- Use case: lookup-table
- Should fit in the main memory of a single worker
- Can only be used read-only

Accumulators

- Special variable to which workers can only "add"
- Only the driver can read
- Similar to MapReduce counters

RDD limitations

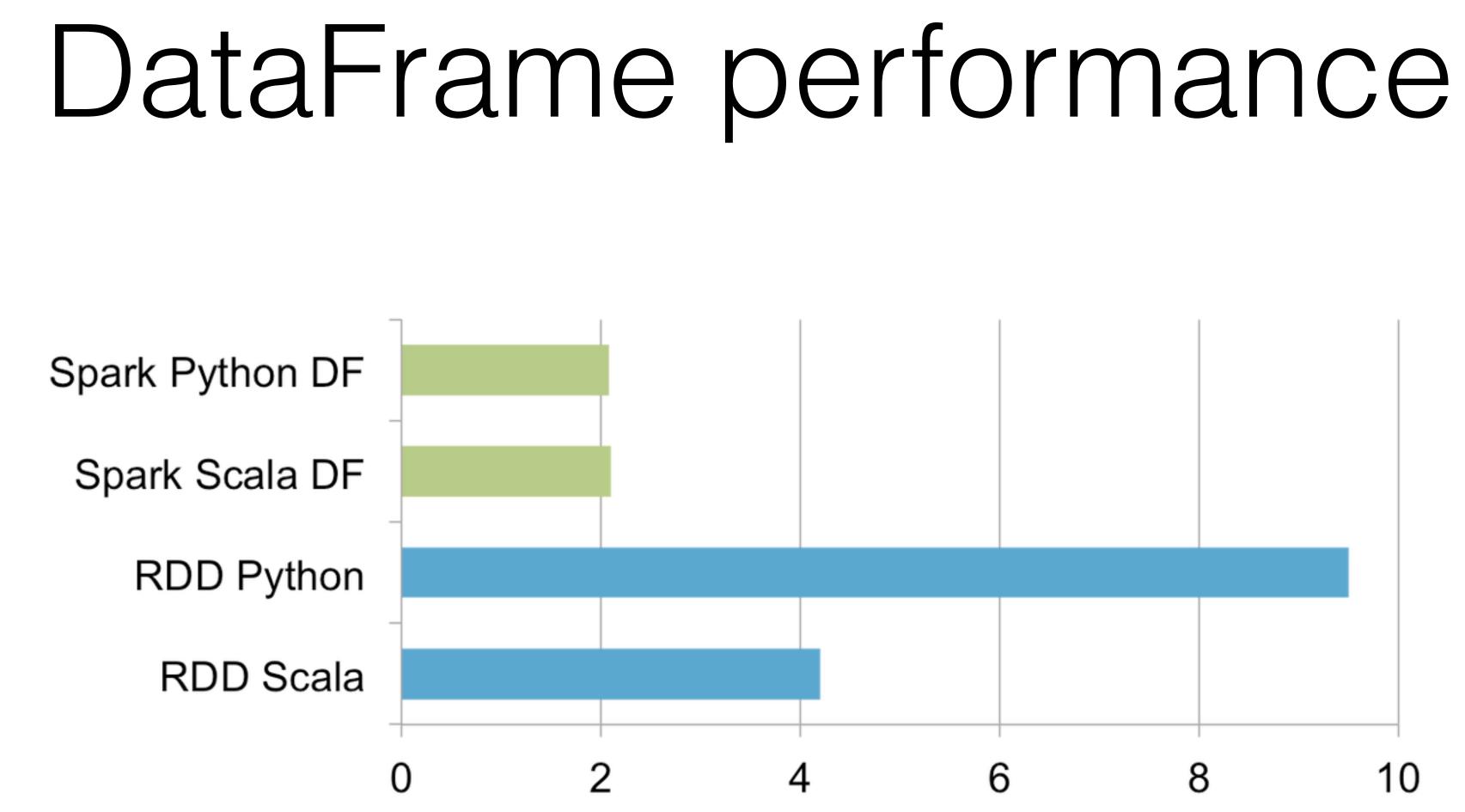
- Reading structured data sources (schema)
- Tuple juggling

([a, b, c]) => (a, [a, b, c]) => (c, [a, b, c]) etc

• Flexibility hinders optimiser

SparkSQL & DataFrames

- Inspiration from SQL & Pandas
- Columnar data representation
- Automatically reading data in Avro, CSV, JSON, ... format
- Easy conversion from/to RDD's



Performance of aggregating 10 million int pairs (secs)

https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html

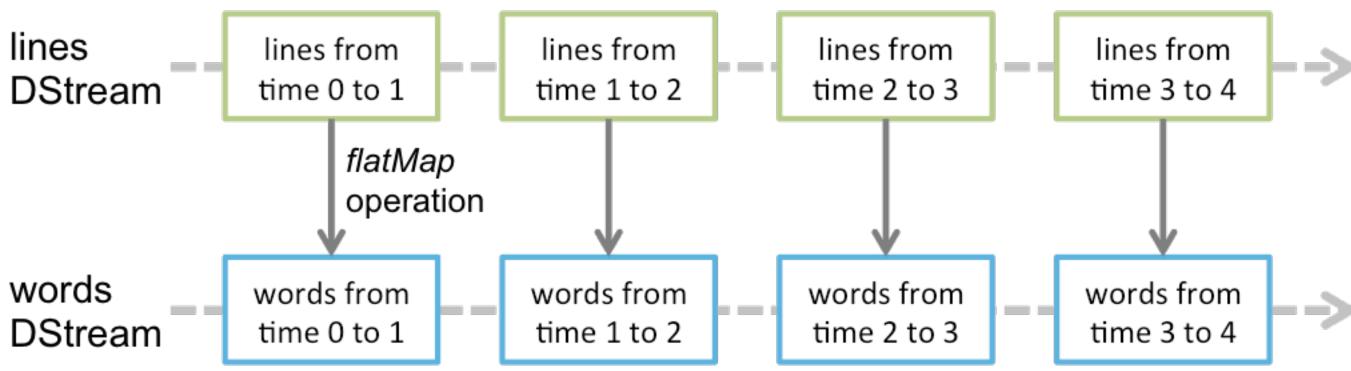
Discretized Streams

lines

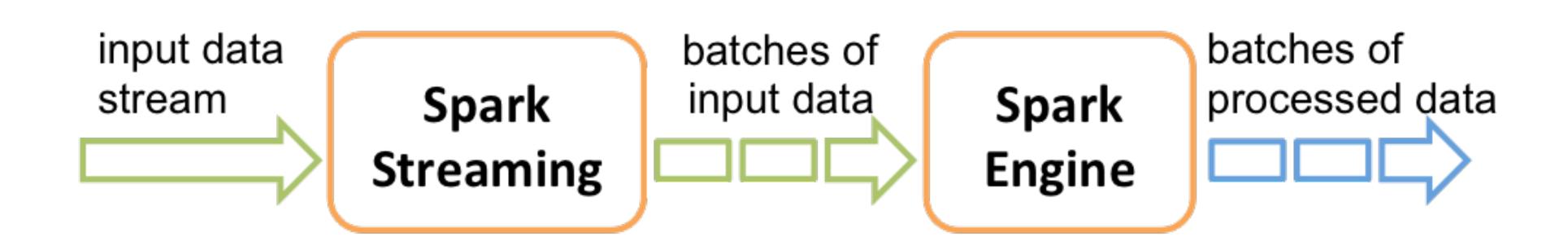
words

http://spark.apache.org/docs/latest/streaming-programming-guide.html

~**>**



Spark Streaming



http://spark.apache.org/docs/latest/streaming-programming-guide.html

Spark uses microbatches to get close to real-time performance Intervals for batch creation can be set

- Kafka
- Flume
- HDFS/S3
- Kinesis
- Twitter
- TCP socket
- Pluggable interface, write your own

Streaming data sources

Machine Learning Library (MLlib)

Common machine learning algorithms on top of Spark:

- classification: SVM, naive Bayes
- clustering: K-means, PIC, LDA
- collaborative filtering: alternating least squares
- dimensionality reduction: SVD, PCA

regression: logistic regression, decision trees, isotonic regression

Deployment

- Stand-alone cluster
- On cluster scheduler (YARN / Mesos)
- Local, single machine (easy way to get started: docker-stacks)

- Interactive shell:
 - spark-shell (Scala)
 - pyspark (Python)
- Notebook
- Standalone application
 - spark-submit <jar> / <py>

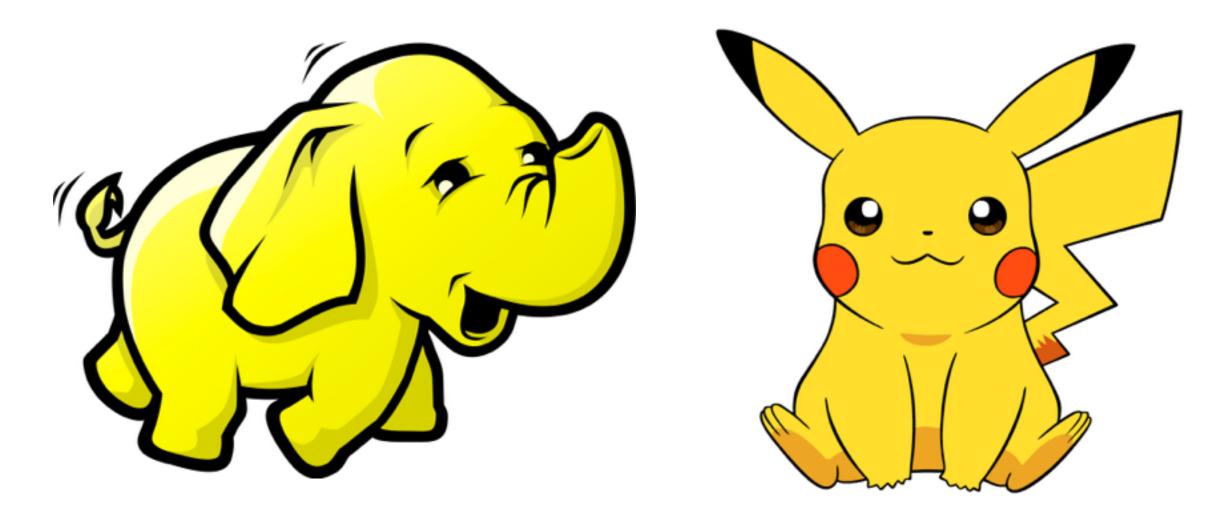
Usage

Distributed data store

Summary

- Spark replaces MapReduce
- RDDs enable fast distributed data processing
- Learn Scala

Intermezzo



https://pixelastic.github.io/pokemonorbigdata/

There are only two hard things in Computer Science: cache invalidation and naming things.

-- Phil Karlton

