Hadoop Distributed Filesystem

28-01-2016
Jeroen Schot - jeroen.schot@surfsara.nl

Mathijs Kattenberg - mathijs.kattenberg@surtsara.nl @ARA
Machiel Jansen - machiel.jansen@surfsara.n|

mailto:jeroen.schot@surfsara.nl
mailto:mathijs.kattenberg@surfsara.nl?subject=
mailto:machiel.jansen@surfsara.nl

| et's store data like its 1999

File Server (NFS)

Client 1 Client 2 Client N

Traditional shared storage In clusters

Proplems with storage server

* File server is a single point of failure
e Scale-up has hard limits (both in capacity and |0)

e Scale-out complex due to filesystem semantics (editing, locking)

GFS - design overview

Handles failure of individual nodes
Optimised for large (100+MB) files
Optimised for sequential reads

Favours high-throughput over low-latency

lInexpensive components...

GFS - architecture

Files are split in 128MB blocks

Blocks are stored on many datanodes

Fach block is stored 3 times (on different nodes)

Single namenode handles metadata (namespace, block locations)

Clients connect directly to datanodes

Hadoop Distributed File System

o Storage component of Apache Hadoop

—

e First released in 2005

 HDFS started as a open-source implementation of GFS

-lles, Blocks & Replicas
e

Namenode

Maintains the mappings of
* files to blocks
* Dlocks to datanodes
Monitors datanode health

Enforces block replica count

Namenode High Avallabillity

| Active Namenode | -

FSimage
(Shared Storage)

Read/write scaling

HDFS Architecture
i ~ | Metadata (Name, replicas, ...):

Metadaga.,ops'”' Namenode /home/foo/data, 3, ...

Block ops
Read Datanodes Datanodes
O E N = Replication = L
L] B Blocks
- \ J
N Y4
Rack 1 Rack 2

Data locality

* |n Hadoop the same machines are often used for both storage and
compute

e The YARN scheduler takes data location into account: tries to
schedule tasks on the same machine as the data

Using HDFS

HDFS is not a filesystem you mount®
Interaction is done via:

* Native Java AP

 hdfs command-line utility
 WebHDFS REST AP

* Third-party libraries for other languages (Python)

Java AP

/* Instantiate reference to HDFS filesystem */
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get (conf);

/* List files in directory */
FFileStatus[] stats = fs.listStatus (new Path ("/some/path/"));

for (FileStatus stat : stats) {
System.out.println(stat.getPath());

}

/* Move a file */
fs.rename (new Path("/old/file/name"), new Path("/new/file/name")) ;

$ hdfs dfs

Usage: hadoop fs [generic options]

—mkdir

—rmdir

-rm [-f

—find <path>
—get [-p] [-ignoreCrc] [-crc] <srec»
—help [cmd '
—-1s [-d] [-h] [-R] [<path>
| P]
—mVv <SIC>
—put [-f]

<expression»

1]

<path> ...]
<dst>]

[-p] [-1] <localsrcy

[-r|-R] [-skipTrash]

<file>]

1

]

(SIC>

]

—cat [-ignhoreCrc] <src> ...]

—checksum <src> ...]

—chgrp [-R] GROUP PATH. . .]

—chmod [-R] <MODE|[,MODE]. .. OCTALMODE> PATH. ..]

—chown [-R] [OWNER][:[GROUP]] PATH...]

—copyFromLocal [-f] [-p] [-1] <localsrc> ... <dst>]
—copyToLocal [-p] [-ignhoreCrc] [-crc] <src» <localdst>]
—count [-q] [-h] <path> ...]

—cp [-f] [-p | —-p[topax]] <src> <dst>]

<localdst>]

<dst> |
]

——ignore-fail-on-non-empty] <dir> ...]
—setrep [-R] [-w] <rep> <path>
—tail [-f]
—test -[defsz]| <path>]

—text [-ignoreCrc] <src> ...]

Object stores

» Scalable storage even simpler than GFS/HDFES openstack"‘

S3

e Accessvia HITP REST interface amazon
webservices™

o Put/get/delete, no edit/append

 Many different implementations (Amazon S3, OpenStack Swift,
Azure Blob Storage, Google Cloud Storage, ...)

-lat namespace

* No filesystem hierarchy with directories and subdirectories
* Only containers and objects:

http://swift.example.com/v1/myaccount/mycontainer/someobject

http://swift.example.com/v1/myaccount/mycontainer/anotherobject

* Filesystem-like view faked with object names (“some/object/name’)

http://swift.example.com/v1/myaccount/mycontainer/someobject
http://swift.example.com/v1/myaccount/mycontainer/anotherobject

Fully distributed

o Storage location is derived from the container/object name
 No central namenode needed (better availability)

o But sometimes a client reads stale data (eventual consistency)

