
Hadoop Distributed Filesystem

28-01-2016
Jeroen Schot - jeroen.schot@surfsara.nl
Mathijs Kattenberg - mathijs.kattenberg@surfsara.nl
Machiel Jansen - machiel.jansen@surfsara.nl

mailto:jeroen.schot@surfsara.nl
mailto:mathijs.kattenberg@surfsara.nl?subject=
mailto:machiel.jansen@surfsara.nl

Let’s store data like its 1999

Traditional shared storage in clusters

File Server (NFS)

Client 1 Client 2 Client N

Problems with storage server

• File server is a single point of failure

• Scale-up has hard limits (both in capacity and IO)

• Scale-out complex due to filesystem semantics (editing, locking)

The Google File System
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google∗

ABSTRACTWe have designed and implemented the Google File Sys-

tem, a scalable distributed file system for large distributed

data-intensive applications. It provides fault tolerance while

running on inexpensive commodity hardware, and it delivers

high aggregate performance to a large number of clients.

While sharing many of the same goals as previous dis-

tributed file systems, our design has been driven by obser-

vations of our application workloads and technological envi-

ronment, both current and anticipated, that reflect a marked

departure from some earlier file system assumptions. This

has led us to reexamine traditional choices and explore rad-

ically different design points.
The file system has successfully met our storage needs.

It is widely deployed within Google as the storage platform

for the generation and processing of data used by our ser-

vice as well as research and development efforts that require

large data sets. The largest cluster to date provides hun-

dreds of terabytes of storage across thousands of disks on

over a thousand machines, and it is concurrently accessed

by hundreds of clients.In this paper, we present file system interface extensions

designed to support distributed applications, discuss many

aspects of our design, and report measurements from both

micro-benchmarks and real world use.Categories and Subject Descriptors
D [4]: 3—Distributed file systemsGeneral TermsDesign, reliability, performance, measurement

Keywords
Fault tolerance, scalability, data storage, clustered storage

∗The authors can be reached at the following addresses:

{sanjay,hgobioff,shuntak}@google.com.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.SOSP’03, October 19–22, 2003, Bolton Landing, New York, USA.

Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

1. INTRODUCTIONWe have designed and implemented the Google File Sys-

tem (GFS) to meet the rapidly growing demands of Google’s

data processing needs. GFS shares many of the same goals

as previous distributed file systems such as performance,

scalability, reliability, and availability. However, its design

has been driven by key observations of our application work-

loads and technological environment, both current and an-

ticipated, that reflect a marked departure from some earlier

file system design assumptions. We have reexamined tradi-

tional choices and explored radically different points in the

design space.First, component failures are the norm rather than the

exception. The file system consists of hundreds or even

thousands of storage machines built from inexpensive com-

modity parts and is accessed by a comparable number of

client machines. The quantity and quality of the compo-

nents virtually guarantee that some are not functional at

any given time and some will not recover from their cur-

rent failures. We have seen problems caused by application

bugs, operating system bugs, human errors, and the failures

of disks, memory, connectors, networking, and power sup-

plies. Therefore, constant monitoring, error detection, fault

tolerance, and automatic recovery must be integral to the

system.
Second, files are huge by traditional standards. Multi-GB

files are common. Each file typically contains many applica-

tion objects such as web documents. When we are regularly

working with fast growing data sets of many TBs comprising

billions of objects, it is unwieldy to manage billions of ap-

proximately KB-sized files even when the file system could

support it. As a result, design assumptions and parameters

such as I/O operation and block sizes have to be revisited.

Third, most files are mutated by appending new data

rather than overwriting existing data. Random writes within

a file are practically non-existent. Once written, the files

are only read, and often only sequentially. A variety of

data share these characteristics. Some may constitute large

repositories that data analysis programs scan through. Some

may be data streams continuously generated by running ap-

plications. Some may be archival data. Some may be in-

termediate results produced on one machine and processed

on another, whether simultaneously or later in time. Given

this access pattern on huge files, appending becomes the fo-

cus of performance optimization and atomicity guarantees,

while caching data blocks in the client loses its appeal.

Fourth, co-designing the applications and the file system

API benefits the overall system by increasing our flexibility.

GFS - design overview

• Handles failure of individual nodes

• Optimised for large (100+MB) files

• Optimised for sequential reads

• Favours high-throughput over low-latency

Inexpensive components…

GFS - architecture
• Files are split in 128MB blocks

• Blocks are stored on many datanodes

• Each block is stored 3 times (on different nodes)

• Single namenode handles metadata (namespace, block locations)

• Clients connect directly to datanodes

Hadoop Distributed File System

• Storage component of Apache Hadoop

• First released in 2005

• HDFS started as a open-source implementation of GFS

Files, Blocks & Replicas

Namenode
Maintains the mappings of

• files to blocks

• blocks to datanodes

Monitors datanode health

Enforces block replica count

Namenode High Availability

Active Namenode

FSimage
(Shared Storage)

Standby Namenodes

Read/write scaling

Data locality

• In Hadoop the same machines are often used for both storage and
compute

• The YARN scheduler takes data location into account: tries to
schedule tasks on the same machine as the data

Using HDFS
HDFS is not a filesystem you mount*

Interaction is done via:

• Native Java API

• hdfs command-line utility

• WebHDFS REST API

• Third-party libraries for other languages (Python)

Java API
/* Instantiate reference to HDFS filesystem */
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);

/* List files in directory */
FileStatus[] stats = fs.listStatus(new Path("/some/path/"));
for (FileStatus stat : stats) {
 System.out.println(stat.getPath());
}

/* Move a file */
fs.rename(new Path("/old/file/name"), new Path("/new/file/name"));

$ hdfs dfs
Usage: hadoop fs [generic options]
 [-cat [-ignoreCrc] <src> ...]
 [-checksum <src> ...]
 [-chgrp [-R] GROUP PATH...]
 [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
 [-chown [-R] [OWNER][:[GROUP]] PATH...]
 [-copyFromLocal [-f] [-p] [-l] <localsrc> ... <dst>]
 [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
 [-count [-q] [-h] <path> ...]
 [-cp [-f] [-p | -p[topax]] <src> ... <dst>]
 [-find <path> ... <expression> ...]
 [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]
 [-help [cmd ...]]
 [-ls [-d] [-h] [-R] [<path> ...]]
 [-mkdir [-p] <path> ...]
 [-mv <src> ... <dst>]
 [-put [-f] [-p] [-l] <localsrc> ... <dst>]
 [-rm [-f] [-r|-R] [-skipTrash] <src> ...]
 [-rmdir [--ignore-fail-on-non-empty] <dir> ...]
 [-setrep [-R] [-w] <rep> <path> ...]
 [-tail [-f] <file>]
 [-test -[defsz] <path>]
 [-text [-ignoreCrc] <src> ...]

Object stores

• Scalable storage even simpler than GFS/HDFS

• Access via HTTP REST interface

• Put/get/delete, no edit/append

• Many different implementations (Amazon S3, OpenStack Swift,
Azure Blob Storage, Google Cloud Storage, …)

Flat namespace
• No filesystem hierarchy with directories and subdirectories

• Only containers and objects:

http://swift.example.com/v1/myaccount/mycontainer/someobject

http://swift.example.com/v1/myaccount/mycontainer/anotherobject

• Filesystem-like view faked with object names (“some/object/name”)

http://swift.example.com/v1/myaccount/mycontainer/someobject
http://swift.example.com/v1/myaccount/mycontainer/anotherobject

Fully distributed

• Storage location is derived from the container/object name

• No central namenode needed (better availability)

• But sometimes a client reads stale data (eventual consistency)

