Using Cartesius & Lisa

Introductory course for Cartesius & Lisa

Jeroen Engelberts jeroen.engelberts@surfsara.nl Consultant Supercomputing

Outline

SURFsara

- About us
- What we do
- Cartesius and Lisa
 - Architectures and Specifications
 - File systems
 - Batch system
 - Module environment
 - Accounting
- Hands on Let's Play!

About SURFsara

- SURFsara offers an integrated ICT research infrastructure and provides services in the areas of computing, data storage, visualization, networking, cloud and e-Science.
- SARA was founded in 1971 as an Amsterdam computing center by the two Amsterdam universities (UvA and VU) and the current CWI
- Independent as of 1995
- Founded Vancis in 2008 offering ICT services and ICT products to enterprises, universities, and educational and healthcare institutions
- As from 1 January 2013, SARA from then on SURFsara – forms part of the SURF Foundation
- First supercomputer in The Netherlands in 1984 (Control Data Cyber 205). Hosting the national supercomputer(s) ever since.

SURFsara – Compute / Data

Compute and Data are subdivided in six groups:

- Supercomputing
- Clustercomputing
- e-Science & Cloud Services
- Visualization
- Data services
- Network innovation & support

About 80 people – System Programmers / Consultants (BSc – MSc – PhD)

SURFsara – Super- and Clustercomputing

Using Cartesius and Lisa

5 SURF SARA

Support

Regular user support

• Typical effort: from a few minutes to a couple of days

Application enabling for Dutch Compute Challenge Projects

• Potential effort by SURFsara staff: 1 to 6 person months per project

Performance improvement of applications

- Typically meant for promising user applications
- Potential effort by SURFsara staff: 3 to 6 person months per project

• Support for PRACE applications

- PRACE offers access to European systems
- SURFsara participates in PRACE support in application enabling
- Visualization projects
- User training and workshops
- Please contact SURFsara at <u>hic@surfsara.nl</u>
- NB Coaching for (master) students (of the UvA)

Supercomputers / Cartesius / Lisa

• What is a Supercomputer?

- A fast computer
- A large computer (memory/storage)
- An expensive computer (millions of € for hardware, electricity and man power)

• Why, or more, when do you need a Super?

- If your task would take months/years on a normal PC
- If your task requires more space (memory/storage) than available in PC
- Why do you, SURFsara, own two Supercomputers?
 - Historic reasons
 - Cartesius via NWO
 - Lisa via UvA, VU, FOM, CWI and NWO

What is the difference?

- Cartesius larger "blocks" (capability computing fewer large scale jobs)
- Lisa smaller "blocks" (capacity computing more small(er) scale jobs)
- Cartesius expensive expensive
- Lisa cheaper, but still expensive

Performance Increase

Year	Machine	R _{peak} GFlop/s	kW	GFlop/s / kW	
1984	CDC Cyber 205 1-pipe	0.1	250	0.0004	20
1988	CDC Cyber 205 2-pipe	0.2	250	0.0008	
1991	Cray Y-MP/4128	1.33	200	0.0067	
1994	Cray C98/4256	4	300	0.0133	
1997	Cray C916/121024	12	500	0.024	
2000	SGI Origin 3800	1,024	300	3.4	
2004	SGI Origin 3800 + SGI Altix 3700	3,200	500	6.4	
2007	IBM p575 Power5+	14,592	375	40	
2008	IBM p575 Power6	62,566	540	116	
2009	IBM p575 Power6	64,973	560	116	
2013	Bull bullx DLC	250,000	260	962	
2014	Bull bullx DLC	>1,000,000	>520	1923	(for

Schematic overview of Cartesius & Lisa

Using Cartesius and Lisa

Cartesius – Login / Service / Fat & Thin

- 2 bullx R423-E3 interactive front end nodes (int1 and int2)
 - 2 × 8-core 2.9 GHz Intel Xeon E5-2690 (Sandy Bridge) CPUs/node
 - 128 GB/node
- 5 bullx R423-E3 service nodes
 - 2 × 8-core 2.9 GHz Intel Xeon E5-2690 (Sandy Bridge) CPUs/node
 - 32 GB/node
- 1 fat node island consisting of 32 bullx R428 E3 fat nodes
 - 4 × 8-core 2.7 GHz Intel Xeon E5-4650 (Sandy Bridge) CPUs/node
 - 256 GB/node
 - 22 Tflop/s

• 2 thin node islands consisting of 540 bullx B710 thin nodes

- 2 × 12-core 2.4 GHz Intel Xeon E5-2695 v2 (Ivy Bridge) CPUs/node
- 64 GB/node
- water cooled
- 249 Tflop/s

Cartesius – Thin / GPGPU

• 3 thin node islands consisting of 360 bullx B720 thin nodes

- 2 × 12-core 2.6 Ghz Intel Xeon E5-2690 v3 (Haswell) CPUs/node
- 64 GB/node
- water cooled
- 1.078 Pflop/s

• 1 accelerator island consisting of 66 bullx B515 accelerated nodes

- 2 × 8-core 2.5 Ghz Intel Xeon E5-2450 v2 (Ivy Bridge) CPUs/node
- 2 × NVIDIA Tesla K40m GPGPUs/node
- 96 GB/node
- 210 Tflop/s
- Total peak performance: ~ 1.5 Pflop/s

Cartesius – other specs

Low-latency network: 4x FDR14 InfiniBand

- Non-blocking within fat node island and thin node islands
- 3.3 : 1 pruning factor among islands
- 56 Gbit/s inter-node bandwidth
- 2.4 µs inter-island latency

File systems and I/O

- 180 TB home file system
- Lustre file system for scratch and project space 7.7 PB

Operating system

• bullx Linux, compatible with Red Hat Enterprise Linux

Lisa – Nodes

• The two login nodes are of type E5-2650 v2

Number	Туре	Clock	Scratch	Memory	Cache	Cores	InfiniBand
32	L5640	2.26 GHz	220 GB	24 GB QPI 5.86 GT/s	12 MB	12	-
64	L5640	2.26 GHz	220 GB	24 GB QPI 5.86 GT/s	12 MB	12	Mellanox DDR
144	E5-2650L	1.80 GHz	750 GB	32 GB QPI 8.00 GT/s	20 MB	16	-
32	E5-2650 v2	2.60 GHz	870 GB	32 GB QPI 8.00 GT/s	20 MB	16	-
280	E5-2650 v2	2.60 GHz	870 GB	64 GB QPI 8.00 GT/s	20 MB	16	-
32	E5-2650 v2	2.60 GHz	870 GB	64 GB QPI 8.00 GT/s	20 MB	16	Mellanox FDR

Lisa – Nodes

- Total cores 8960
- Total memory 30 TB ٠
- Total peak pf 158 TFlop/sec •
- Disk space ullet
- OS •
- Mellanox •
- •
- Latency ٠

100 TB for the home file systems Debian Linux AMD64 OS InfiniBand network

- Bandwidth DDR: 20 Gbit/sec, FDR: 56 Gbit/sec
 - DDR: 2.6 μ sec, FDR: 1.3 μ sec

Cartesius & Lisa – File systems

/home/user

- User home directory (quota currently 200GB)
- Backed up
- Meant for storage of important files (sources, scripts, input and output data)
- Not the fastest file system

/scratch

- Cartesius: /scratch-local & /scratch-shared (quota currently 8 TB)
- Lisa: /scratch (quota depends on disk size)
- Not backed up
- Meant for temporary storage (during running of a job and shortly thereafter)
- The fastest file systems on Cartesius & Lisa

Cartesius & Lisa – File systems

/archive

- Connected to the tape robot (quota virtually unlimited)
- Backed up
- Meant for long term storage of files, zipped, tarred, combined into small number of files
- Slow especially when retrieving "old" data
- Not available to worker nodes

/project

- Only available on Cartesius !
- For special projects requiring lots of space (quota as much as needed/possible)
- Not backed up
- Meant for special projects
- Comparable in speed with /scratch

Cartesius – SLURM

During the course, copyrighted slides have been shown

Since SURFsara does not own the rights, please check our website for information regarding SLURM:

https://www.surfsara.nl/systems/cartesius/usage/batch-usage

Cartesius – SLURM configuration

Current configuration

- specify required resources (nodes, cores, wall clock limit)
- Partition does not need to be specified

• Partitions may be specified by hand:

- normal default partition, thin nodes, max 5 days, max 360 nodes
- fat fat nodes, max 5 days, max 16 nodes
- short thin nodes, max 1 hour, max 360 nodes
- staging service nodes, max 5 days, max 1 core
- gpu GPGPU nodes, max 5 days
- gpu_short GPGPU nodes, max 1 hour
- The exact configuration is subject to change (*i.e.* has to be tuned)

Lisa – Torque (PBS) configuration

Current configuration

- specify required resources (nodes, cores, wall clock limit)
- queue does not need to be specified

• Queues may be specified by hand:

- batch "overload" queue, job not yet assigned to queue
- serial single node queue, max 5 days
- parallel multi node queue, max 5 days
- express test jobs, max 5 minutes
- The exact configuration is subject to change (*i.e.* has to be tuned)

Modules – Why modules?

• Why modules?

- Environment variables are set for you, like:
 - PATH
 - LD_LIBRARY_PATH
- Multiple versions of software can coincide

Modules – Commands

Commands

- module avail
- module load modulename
- module add modulename
- module display modulename
- module unload modulename
- module rm modulename
- module list
- module help

Modules – module avail

00	☆ jeroene — jeroene@int2:~ — ssh — 80×24
[jeroene@int2 //	<pre>>]\$ module avail fftw3 home/jeroene/modules/modulefiles//modulefiles/init</pre>
// fftw3/gnu/3.3.3 fftw3/intel(def //	home/jeroene/modules/modulefiles//modulefiles/libraries 3(default) fftw3/intel/3.3.3(default) fault) home/jeroene/modules/modulefiles//modulefiles/tools
/d /d [jeroene@int2 /	opt/modules/modulefiles opt/modules/3.2.9/Modules/modulefiles

Modules – module load / display

[]eroene@int2 [jeroene@int2	~]\$ module load fi ~]\$ module display	ftw3/intel / fftw3/intel	
/home/jeroene/	modules/modulefile	es//modulefiles/libraries/fftw3/intel/3.3.3:	
module-whatis	Activate fftw3	library	
setenv SURFSA	RA_FFTW3_R00T	/hpc/sw/fftw3-3.3.3-intel-impi	
setenv SURFSA	RA_FFTW3_LIB	/hpc/sw/fftw3-3.3.3-intel-impi/lib	
setenv SURFSA	RA_FFTW3_INCLUDE	/hpc/sw/fftw3-3.3.3-intel-impi/include	
prepend-path	SURFSARA_INCLUDE	PATH /hpc/sw/fftw3-3.3.3-intel-impi/include	:
prepend-path	SURFSARA_LIBRAR	<pre>/_PATH /hpc/sw/fftw3-3.3.3-intel-impi/lib</pre>	:
append-path	PRACE_CFLAGS	-I/hpc/sw/fftw3-3.3.3-intel-impi/include	
append-path	PRACE_FFLAGS	-I/hpc/sw/fftw3-3.3.3-intel-impi/include	
append-path	PRACE_LDFLAGS	-L/hpc/sw/fftw3-3.3.3-intel-impi/lib -Wl,-R/hpc	:/
sw/fftw3-3.3.3	-intel-impi/lib		

Modules – module list / unload

Modules – defaults

• SURFsara defaults:

- Intel compilers
- Intel MPI
- Intel MKL

module naming scheme: <name>[/<mpi>][/<compiler>][/<version]

- <name> = e.g. hdf5
- <mpi> = either 'impi' (Intel MPI, default) or 'xmpi' (bullx MPI)
- <compiler> = either 'intel' (Intel, default) or 'gnu' (GCC)
- <version> = e.g. 1.2.3

Defaulting:

- module load foo
- module load foo/impi
- module load foo/impi/intel
- module load foo/impi/intel/1.2.3

Cartesius & Lisa – Accounting

26 SURF SARA

- Getting access to Cartesius & Lisa
- Accounts and Logins
- Budget and jobcost

Cartesius – How to obtain Access

Take a look at the SURFsara website:

https://www.surfsara.nl/systems/cartesius/account

- 1. Proposal to NWO
- 2. Filling in the forms in IRIS
- 3. Peer review process
- 4. Approval from NWO, What next?
- 5. Granting letter (from NWO) \rightarrow A copy to SURFsara
- 6. Acceptance letter (from NWO) \rightarrow Fill it in and return it to NWO
- 7. User form (see website) \rightarrow Fill in and send it to SURFsara
- Usage agreement (see website) → each user should fill this in, sign it and send it to SURFsara

Lisa – How to obtain Access

Take a look at the SURFsara website:

https://www.surfsara.nl/systems/lisa/account

- Via NWO (like for Cartesius)
- Affiliates of UvA and VU
 - Send an email to hic@surfsara.nl with
 - Your supervisor needs to send an approval
- Affiliates of the Genetic Cluster Computer project (GCC)
 - <u>http://www.geneticcluster.org</u>
- Affiliates of FOM and CWI
 - Contact local contact person to get access

Cartesius – Accounts and Logins

After receiving the forms an account and login will be created for you

Account

- administrative entity to keep track of used budget
- Owner of an account is the PI (Principal Investigator) who submitted the project proposal to NWO
- A project can have one or more accounts associated with it
- Each account can have several logins coupled to it
- Duration of an account is 1 year (expiration date set by NWO)

Login

- combination of username + password and environment to give physical access to Cartesius
- Logins are STRICTLY PERSONAL
- A login is at any time associated with one and only one account
- Logins can be moved from one account to another

Cartesius – Account Expiration

Monthly warnings will be sent (to PI!!!) that account will expire, starting 3 months before expiration date

Extension of an account is possible (contact NWO)

- Asking for extra time (budget will remain)
- Asking for extra budget (will be added to remaining budget)
- Submit a continuation proposal for extension of the same project (budget will be reset to new value)
- Submit a completely new proposal with new accounts (logins can be moved to new account)

After expiration date the Account will be blocked

- Login to Cartesius is denied
- You will be asked to give SURFsara permission to remove the login and all data associated with it from the system
- If you don't respond we will first seek permission of the <u>Account Owner</u> to remove everything
- If still no response we will remove everything after a grace period of 6 months (in Usage Agreement)

Cartesius – Budget and jobcost

Budget

- If project proposal is accepted a budget is assigned to the accounts
- Budget is expressed in SBU (System Billing Units)
- 1 SBU = the use of 1 core for 1 hour on Cartesius

Jobcost (Compute Nodes)

- Jobcost based on wallclock time
- You always pay for a complete node
- Using 1 node for 1 hour will cost you 24 SBU (thin) or 32 SBU (fat)
- Using 1 GPGPU node costs 1 SBU for 1 core for 20 minutes

Jobcost (Service Nodes)

- Jobcost based on wallclock time
- You pay for a single core
- Using 1 core for 1 hour will cost you 1 SBU

Lisa – Budget and jobcost

Budget

- UvA and VU users have no limitation on hours
- Jobcost is relevant for NWO, FOM and CWI-users

Jobcost

- Jobcost based on wallclock time
- You always pay for a complete node
- Billing unit is PNU (Processor Node Uur)
- 1 PNU = 1 8-core node for 1 hour
 - 8-core nodes themselves are no longer available!
- 1 hour on a 12-core node = 1.5 PNU
- 1 hour on a 16-core node = 2 PNU

 \rightarrow NB – Starting February 2015, jobcost will be calculated in core hours, rather than (8-core) node hours.

Cartesius & Lisa – Budget and jobcost

For overview of jobcosts use the command "accuse"

• Gives consumed budget per day or per month

For overview of budget use the command "accinfo"

- Information about initial, consumed and remaining budget
- Gives contact information (e-mail address of account owner)
- Gives list of logins associated with the account

Cartesius – Budget and jobcost

Account	: sondjero (CARTESIUS)
Customer	: (10305) Klant voor subinstelling 10305
Email	: jeroene@sara.nl
Institute code	: SARA-SUPER
Faculty	: SARA – OSD
Faculty code	: HPC
Invoice code	: SARA
Blocked	: No
Project	:
Account created	l on 2007-11-01, last modified on 2007-11-01.
Budget type	; A
Initial budget	; 105287:17
Used budget	; 5:41
Remaining budge	et; 105281:36
Creation date	; 2007-11-01
Last modified	; 2013-06-20
Valid until	; 2016-12-31
User ID(s) link	ed to this account:
User Group	
Jeroene ANY	

34

SURF SARA

Using Cartesius and Lisa

Cartesius – Budget and jobcost

Accounting information

- Jobinfo is kept by SLURM in a temporary file
- After the job finishes:
 - Correct finish: the temporary file is added to a history file.
 - SLURM crash: the temporary file is discarded
 - Job restarted by system: temporary file is discarded
- <u>Once a day</u> (during the night):
 - accounting information is extracted from this history file and added to the accounting database.
 - The remaining budget is computed: If this is negative your account will be blocked.

Budget check:

- To avoid that you will overtax your budget we introduce the budget check, that will run at submission time and at job start.
- When remaining budget is not sufficient, your job will be refused.

Thank you for listening!

Using Cartesius and Lisa

36 SURF SARA

Hands-on

Contents

- Download necessary files locally
- Install user tools (Windows users only)
- Copy files to Cartesius
- Login to Cartesius
- Compile Molden (a comp. Chemistry tool)
- Look at input file with Molden
- Submit a job (geometry optimization) ... wait for the result ...
- Analyze the result
- Copy back output/results locally

Hands-on – Download

Download the material from

<u>ftp://ftp.surfsara.nl/pub/outgoing/usingcartesius</u>

It includes:

- molden5.0.tar.gz Molecular Visualization Tool
- molecule.job, molecule.zmat Input for example

For Windows users additionally:

Install MobaXterm (from <u>http://mobaxterm.mobatek.net</u>)

Alternatively, install these three packages (from the FTP server)

- putty-0.62-installer.exe
- winscp437setup.exe
- Xming-6-9-0-31-setup.exe

Hands-on – Copy files to Cartesius

Mac & Linux users:

- Open a Terminal (Linux) or X11 (Mac)
- Go to the directory where you downloaded files
- Type: scp molecule.* molden5.0.tar.gz <u>sdemonnn@cartesius.surfsara.nl</u>:
 - \rightarrow where *nnn* is your demo number

For Windows users:

Use MobaXterm drag and drop

Or, if you installed the alternative (Xming/putty):

- Start WinSCP
- Create "New" and fill in:
- Host name: cartesius.surfsara.nl
- User name: sdemonnn
- Password: ******

Look up downloaded files and copy them to Cartesius

Using Cartesius and Lisa

Hands-on – Copy files to Cartesius

Mac & Linux users:

- Open a Terminal (Linux) or X11 (Mac)
- Type:ssh -X <u>sdemonnn@cartesius.surfsara.nl</u> → where nnn is your demo number

For Windows users:

In the terminal (black) window, type: ssh -X <u>sdemonnn@cartesius.surfsara.nl</u>
 → where nnn is your demo number

Or, if you installed the alternative (Xming/putty):

- Start Xming (if not yet started system tray)
- Start PuTTY
- Host Name: cartesius.surfsara.nl
- Click on Connection/SSH/X11
- Check under X11 forwarding "Enable X11 forwarding"
- Click "Open"
- User your sdemonnn username and password to login

Hands-on – Molden

All users

- Extract Molden tarball:
 tar zxf molden5.0.tar.gz
- Go into Molden directory: cd molden5.0
- Make the binary: *make*
- Move the resulting binary to ~/bin: mv molden ../bin
- Go back to home directory: cd ..
- Have a look at the molecule: molden molecule.zmat

Hands-on – Inspect job

All users

Edit job script *gedit molecule.job*

```
#!/bin/bash
#SBATCH -N 1
#SBATCH --tasks-per-node 16
#SBATCH -t 10
STARTDIR=`pwd`
echo "%NProcShared = 16" > $TMPDIR/molecule.inp
echo "#RHF/3-21G Opt" >> $TMPDIR/molecule.inp
echo "#RHF/3-21G Opt" >> $TMPDIR/molecule.inp
echo "" >> $TMPDIR/molecule.inp
echo "" >> $TMPDIR/molecule.inp
echo "0,1" >> $TMPDIR/molecule.inp
cat molecule.zmat >> $TMPDIR/molecule.inp
cd $TMPDIR
module load g09/d.01
g09 < molecule.inp</pre>
```


Hands-on – Submit/run/analyze job

All users

- Submit job sbatch molecule.job
- Inspect status of your job squeue -u sdemonnn
- Once running, inspect outputfile tail -f slurm-<jobid>.out → fill in job_id
- Once finished, analyze outputfile molden slurm-<jobid>.out
- In Molden, press "Movie"
 - \rightarrow See how benzene "becomes" flat and hexagonal!

