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Programming Multi-Core Systems with OpenMP

OpenMP at a Glance
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Target Multi-core Systems

Small-scale general-purpose (x86) multicore processors:

> Intel / AMD commodity processors with 2, 4, 6 or 8 cores

» potentially hyperthreaded

HuperTransport™ technology
links provide up to 57.6 GB /s peak
bandwidth per procassor®.

12.868/s @
DDR2-800
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Target Multi-core Systems

Medium-scale server systems:

» multiple (2 or 4 in practice) identical processors
» each processor with several cores
> high bandwidth data path between processors

AMD Opteron™ 6000 Series Platform
12/8 core Processor Support
1, 2, or 4 socket support (4P shown)
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Target Multi-core Systems

Large-scale shared address space compute systems:
> large number of slightly simpler cores
» SUN MicroSystems / Oracle Niagara / UltraSparc T series
» up to 512 hardware threads (T3-4 server)
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Design Rationale of OpenMP

Ideal:
» Automatic parallelisation of sequential code.

» No additional parallelisation effort for development,
debugging, maintenance, etc.
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Design Rationale of OpenMP

Ideal:
» Automatic parallelisation of sequential code.

» No additional parallelisation effort for development,
debugging, maintenance, etc.
Problem:

» Data dependences are difficult to assess.

» Compilers must be conservative in their assumptions.
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Design Rationale of OpenMP

Ideal:
» Automatic parallelisation of sequential code.
» No additional parallelisation effort for development,

debugging, maintenance, etc.

Problem:

» Data dependences are difficult to assess.

» Compilers must be conservative in their assumptions.

Way out:

> Take or write ordinary sequential program.

» Add annotations/pragmas/compiler directives that guide
parallelisation.

> Let the compiler generate the corresponding code.
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OpenMP at a Glance

OpenMP as a programming interface:

» Compiler directives
» Library functions

» Environment variables

C/C++ version:

#pragma omp name [clause]*
structured block

Fortran version:

'$ OMP name [ clause [, clause]*]
code block
'$ OMP END name
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Hello World with OpenMP

#include "omp.h"
#include <stdio.h>

int main ()
{
printf ( "Starting execution with %d threads:\n",
omp_get_num_threads ());

#pragma omp parallel
{
printf ( "Hello world says thread %d of %d.\n",
omp_get_thread_num(),
omp_get_num_threads ());
}

printf ( "Execution of %d threads terminated.\n",
omp_get_num_threads ());

return( 0);
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Hello World with OpenMP

Compilation:

gcc -fopenmp hello_world.c

Output using 4 threads:

Starting execution with 1 threads:
Hello world says thread 2 of 4.
Hello world says thread 3 of 4.
Hello world says thread 1 of 4.

Hello world says thread O of 4.
Execution of 1 threads terminated.
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Hello World with OpenMP

Using 4 threads:

Starting execution with 1 threads:
Hello world says thread 2 of 4.
Hello world says thread 3 of 4.
Hello world says thread 1 of 4.

Hello world says thread O of 4.
Execution of 1 threads terminated.
Who determines number of threads ?

» Environment variable: export OMP_NUM_THREADS=4

» Library function: void omp_set_num_threads( int)
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OpenMP Execution Model

Classical Fork/Join:

Master thread executes serial code.

. - Master thread encounters parallel directive.

Master and slave threads concurrently
execute parallel block.

Yyvy Implicit barrier, wait for all threads to finish.

Master thread resumes serial execution.
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Programming Multi-Core Systems with OpenMP

Loop Parallelization
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Simple Loop Parallelisation

Example: element-wise vector product:

void elem_prod( double *c, double *a, double *b, int len)

{
int 1i;
#pragma omp parallel for
for (i=0; i<len; i++)
{
c[i]l = ali]l =* b[il;
}
}
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Simple Loop Parallelisation

Example: element-wise vector product:

void elem_prod( double *c, double *a, double *b, int len)
{
int 1i;

#pragma omp parallel for

for (i=0; i<len; i++)

{
cli]l = alil * bl[il;
}
}
Prerequisite:

» No data dependence between any two iterations.
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Simple Loop Parallelisation

Example: element-wise vector product:

void elem_prod( double *c, double *a, double *b, int len)
{
int 1i;

#pragma omp parallel for

for (i=0; i<len; i++)

{
cli]l = alil * bl[il;
}
}
Prerequisite:

» No data dependence between any two iterations.
» Caution: YOU claim this property !!
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Directive #pragma omp parallel for

What the compiler directive does for you:
> It starts additional worker threads depending on
OMP_NUM_THREADS.
> It divides the iteration space among all threads.

> It lets all threads execute loop restricted to their mutually
disjoint subsets.

> It synchronizes all threads at an implicit barrier.

» It terminates worker threads.
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Directive #pragma omp parallel for

What the compiler directive does for you:
> It starts additional worker threads depending on
OMP_NUM_THREADS.
> It divides the iteration space among all threads.

> It lets all threads execute loop restricted to their mutually
disjoint subsets.

> It synchronizes all threads at an implicit barrier.

» It terminates worker threads.

Restrictions:

» The directive must directly precede for-loop.
» The for-loop must match a constrained pattern.

» The trip-count of the for-loop must be known in advance.
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Shared and Private Variables

Example:

#pragma omp parallel for

for (i=0; i<len; i++)
{
res[i] = al[i] * b[il;

}

» Shared variable: one instance for all threads

» Private variable: one instance for each thread
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Shared and Private Variables

Example:

#pragma omp parallel for

for (i=0; i<len; i++)
{
res[i] = ali]l * b[il;

}

Who decides that res, a, b, and len are shared variables,
whereas i is private 77

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP



Shared and Private Variables

Example:

#pragma omp parallel for

for (i=0; i<len; i++)
{
res[i] = ali]l * b[il;

}

Who decides that res, a, b, and len are shared variables,
whereas i is private 77

Default rules:

» All variables are shared.

» Only loop variables of parallel loops are private.
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Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y (double) j / (double) N;
depth[i,j] = mandelval( x, y, max);

}}
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Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y (double) j / (double) N;
depth[i,j] = mandelval( x, y, max);

T}

Properties to check:

» No data dependencies between loop iterations ?

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP



Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;

y = (double) j / (double) N;

depth[i,j] = mandelval( x, y, max);
P}

Properties to check:

» No data dependencies between loop iterations 7 YES !

» Trip-count known in advance ?
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Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval( x, y, max);
P}

Properties to check:

» No data dependencies between loop iterations 7 YES !
» Trip-count known in advance 7 YES !

» Function mandelval without side-effects 7
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Parallelisation of a Less Simple Loop

Function mandelval:

int mandelval( double xx, double yy, int max)

{
int i =0;
double x = xx, y = yy;
while (x*x + y*y <= 4.0 && i < max) {
X = X*X - y*y + XX;
y = X*y + X*y + yy;
i++;
}
return i;
}
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Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;

depth[i,j] = mandelval( x, y, max);
o}

Properties to check:

No data dependencies between loop iterations 7 YES !
Trip-count known in advance 7 YES !
Function mandelval without side-effects 7 YES !

Only loop variable i needs to be private 7 NO !l
Check x,y,j

v vV v v
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Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

#pragma omp parallel for private( x, y, j) shared( M, N, max)
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval( x, y, max);
} o}

Private clause:

» Directives may be refined by clauses.

» Private clause allows us to tag any variable as private.

» Caution: private variables are not initialised outside parallel
section !!

» Shared clause allows us to explicitly mark shared variables.
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Parallelisation of a Less, Less Simple Loop

Mandelbrot set with additional counter:
int total = 0;

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval( x, y,
total = total + depth[i,j];

max) ;

}}

Programming Multi-Core Systems with OpenMP
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Parallelisation of a Less, Less Simple Loop

Mandelbrot set with additional counter:
int total = 0;
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval( x, y, max);

total = total + depth[i,j];
oy

Problems:

» New variable total introduces data dependence.
» Data dependence could be ignored due to associativity.
» New variable total must be shared.

» Incrementation of total must avoid race condition.
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Parallelisation of a Less, Less Simple Loop

Mandelbrot set with additional counter:

int total = 0;

#pragma omp parallel for private( x, y, j)
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval( x, y, max);

#pragma omp critical
{
total = total + depthl[i,jl;
}
}
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Critical Regions

The critical directive:
» Directive must immediately precede new statement block.
» Statement block is executed without interleaving.

» Directive implements critical region.

Equivalence:

?pragma omp critical <j::i>> pthread_mutex_lock( &lock);
<statements>

<statements>
} pthread_mutex_unlock ( &lock);

Programming Multi-Core Systems with OpenMP
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Critical Regions

The critical directive:

» Directive must immediately precede new statement block.
» Statement block is executed without interleaving.

» Directive implements critical region.

Equivalence:

?pragma omp critical <j::i>> pthread_mutex_lock( &lock);

<statements>

<statements>
pthread_mutex_unlock ( &lock);

}

Disadvantage:

» All critical regions in entire program are synchronised.

» Unnecessary overhead.
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Critical Regions

The named critical directive
» Critical regions may be associated with names.
» Critical regions with identical names are synchronised.
» Critical regions with different names are executed concurrently.

Equivalence:

#pragma omp critical (name)

{
<statements>
}

pthread_mutex_lock( &name_lock);

<statements>
pthread_mutex_unlock ( &name_lock);

Programming Multi-Core Systems with OpenMP
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Reduction Operations

Specific solution: reduction clause

#pragma omp parallel for private( x, y, i, j) \
reduction (+:total)
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {

x = (double) i / (double) M;
y (double) j / (double) N;
depth[i,j] = mandelval( x, y, max);
total = total + depthl[i,jl;

Properties:

» Reduction clause only supports built-in reduction operations:
+,ox, T, &, |, &&, I

» User-defined reductions only supported via critical regions.

» Bit accuracy not guaranteed.
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Shared and Private Variables Reloaded

Shared variables:

» One instance shared between sequential and parallel execution.

> Value unaffected by transition.

Private variables:

» One instance during sequential execution.
» One instance per worker thread during parallel execution.

» No exchange of values.
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Shared and Private Variables Reloaded

Shared variables:

» One instance shared between sequential and parallel execution.

> Value unaffected by transition.

Private variables:

» One instance during sequential execution.
» One instance per worker thread during parallel execution.

» No exchange of values.

New: Firstprivate variables:

> Like private variables, but ...

» Worker thread instances initialised with master thread value.
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Shared and Private Variables Reloaded

Example:

int a=1, b=2, c=3

#pragma omp parallel for private( a) \
firstprivate( b) \
shared (c)
for (i=0; i<10; i++) {
// before first iteration:

// a : ?? | b : ?? | ¢ : 7?7
a++; b++; c=i;

}

// a : 7?7 | b : 77 c : 77
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Shared and Private Variables Reloaded

Example:

int a=1, b=2, c=3

#pragma omp parallel for private( a) \
firstprivate( b) \
shared ( c)
for (i=0; i<10; i++) {
// before first iteration:
// a : undef | b : 2 | ¢ : undef
a++; b++; c=i;

}

// a : 1 ] b : 2 | ¢ : undef
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Conditional Parallelisation

Problem:

» Parallel execution of a
loop incurs overhead:

» creation of worker
threads
» scheduling
» synchronisation barrier
» This overhead must be
outweighed by sufficient
workload.
» Workload depends on

» loop body,
» trip count.

Clemens Grelck, University of Amsterdam
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Conditional Parallelisation

Problem:

» Parallel execution of a
loop incurs overhead:

» creation of worker
threads
» scheduling
» synchronisation barrier
» This overhead must be
outweighed by sufficient
workload.
» Workload depends on

» loop body,
» trip count.
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Example:

if (len < 1000) {
for (i=0; i<len; i++)
{
res[i] = al[i]l * b[il;
}
¥
else {
#pragma omp parallel for
for (i=0; i<len; i++)
{
res[i] = al[i] * b[il;
}
}
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Conditional Parallelisation

Introducing the if-clause:

if (len < 1000) {
for (i=0; i<len; i++) {
res[i] = al[i]l * b[il;
¥
}
else {
#pragma omp parallel for
for (i=0; i<len; i++) {
res[i] = al[i]l * b[i];

3 g

#pragma omp parallel for if (lemn >= 1000)
for (i=0; i<len; i++) {
res[i] = alil * b[il;

}

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP



Programming Multi-Core Systems with OpenMP

Scheduling
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Loop Scheduling

Definition:

» Loop scheduling determines which iterations are executed by
which thread.

Aim:

» Equal workload distribution

task 1

s
task 2 E=a

]
task 3 £

25
task 4 c

c

>

(7]
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Loop Scheduling

Problem:

» Different situations require different techniques

The schedule clause:

#pragma omp parallel for schedule( <type> [, <chunk>])
for (...)
{

}

Properties:
> Clause selects one out of a set of scheduling techniques.
» Optionally, a chunk size can be specified.

» Default chunk size depends on scheduling technique.
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Loop Scheduling

Static scheduling:

#pragma omp parallel for schedule( static)

> Loop is subdivided into as many chunks as threads exist.
» Often called block scheduling.
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Loop Scheduling

Static scheduling;:

#pragma omp parallel for schedule( static)

» Loop is subdivided into as many chunks as threads exist.

» Often called block scheduling.

Static scheduling with chunk size:

#pragma omp parallel for schedule( static, <n>)

» Loop is subdivided into chunks of n iterations.
» Chunks are assigned to threads in a round-robin fashion.

> Also called block-cyclic scheduling.
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Loop Scheduling

Dynamic scheduling;:

#pragma omp parallel for schedule( dynamic, <n>)

» Loop is subdivided into chunks of n iterations.
» Chunks are dynamically assigned to threads on their demand.
> Also called self scheduling.

» Default chunk size: 1 iteration.

Properties:

» Allows for dynamic load distribution and adjustment.
» Requires additional synchronization.

» Generates more overhead than static scheduling.
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Loop Scheduling

Dilemma of chunk size selection:
» Small chunk sizes mean good load balancing, but high
synchronisation overhead.

» Large chunk sizes reduce synchronisation overhead, but result
in poor load balancing.
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Loop Scheduling

Dilemma of chunk size selection:
» Small chunk sizes mean good load balancing, but high
synchronisation overhead.

» Large chunk sizes reduce synchronisation overhead, but result
in poor load balancing.

Rationale of guided scheduling:

> In the beginning, large chunks keep synchronisation overhead
small.

» When approaching the final barrier, small chunks balance
workload.
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Loop Scheduling

Guided scheduling:

#pragma omp parallel for schedule( guided, <n>)

» Chunks are dynamically assigned to threads on their demand.

v

Initial chunk size is implementation dependent.

v

Chunk size decreases exponentially with every assignment.

v

Also called guided self scheduling.

v

Minimum chunk size: n (default: 1)

Example:

» Total number of iterations: 250
» Initial / minimal chunk size: 50 / 5

» Current chunk size: 80% of last chunk size:
50-40-32-26-21-17-14-12-10-8-6-5-5-4

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP



Programming Multi-Core Systems with OpenMP

Outlook
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What's More ?

More in OpenMP-2:

Decouple parallel regions from work sharing

v

v

Control synchronisation barriers

v

Task parallel sections

v

Low-level locks and condition variables
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What's More ?

More in OpenMP-2:

Decouple parallel regions from work sharing

v

v

Control synchronisation barriers

v

Task parallel sections

v

Low-level locks and condition variables

More in OpenMP-3:

» Nested parallel regions
» Spawning and synchronisation of tasks

>
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What's More ?

More in OpenMP-2:

Decouple parallel regions from work sharing

v

v

Control synchronisation barriers

v

Task parallel sections

v

Low-level locks and condition variables

More in OpenMP-3:

» Nested parallel regions
» Spawning and synchronisation of tasks

>

More information:

> Www.openmp.org
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The End: Questions 7
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