Programming Multi-Core Systems with OpenMP

Clemens Grelck

University of Amsterdam

UvA / SURFsara
High Performance Computing and Big Data

UNIVERSITY OF AMSTERDAM
X

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Programming Multi-Core Systems with OpenMP

OpenMP at a Glance

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Target Multi-core Systems

Small-scale general-purpose (x86) multicore processors:

> Intel / AMD commodity processors with 2, 4, 6 or 8 cores

» potentially hyperthreaded

HuperTransport™ technology
links provide up to 57.6 GB /s peak
bandwidth per procassor®.

12.868/s @
DDR2-800

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Target Multi-core Systems

Medium-scale server systems:

» multiple (2 or 4 in practice) identical processors
» each processor with several cores
> high bandwidth data path between processors

AMD Opteron™ 6000 Series Platform
12/8 core Processor Support
1, 2, or 4 socket support (4P shown)

SR56x([me—

I Nen
R 5 25,60
vo
L

l x4 AcLink

vo
virtualzation

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Target Multi-core Systems

Large-scale shared address space compute systems:
> large number of slightly simpler cores
» SUN MicroSystems / Oracle Niagara / UltraSparc T series
» up to 512 hardware threads (T3-4 server)

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Design Rationale of OpenMP

Ideal:
» Automatic parallelisation of sequential code.

» No additional parallelisation effort for development,
debugging, maintenance, etc.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Design Rationale of OpenMP

Ideal:
» Automatic parallelisation of sequential code.

» No additional parallelisation effort for development,
debugging, maintenance, etc.
Problem:

» Data dependences are difficult to assess.

» Compilers must be conservative in their assumptions.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Design Rationale of OpenMP

Ideal:
» Automatic parallelisation of sequential code.
» No additional parallelisation effort for development,

debugging, maintenance, etc.

Problem:

» Data dependences are difficult to assess.

» Compilers must be conservative in their assumptions.

Way out:

> Take or write ordinary sequential program.

» Add annotations/pragmas/compiler directives that guide
parallelisation.

> Let the compiler generate the corresponding code.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

OpenMP at a Glance

OpenMP as a programming interface:

» Compiler directives
» Library functions

» Environment variables

C/C++ version:

#pragma omp name [clause]*
structured block

Fortran version:

'$ OMP name [clause [, clause]*]
code block
'$ OMP END name

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Hello World with OpenMP

#include "omp.h"
#include <stdio.h>

int main ()
{
printf ("Starting execution with %d threads:\n",
omp_get_num_threads ());

#pragma omp parallel
{
printf ("Hello world says thread %d of %d.\n",
omp_get_thread_num(),
omp_get_num_threads ());
}

printf ("Execution of %d threads terminated.\n",
omp_get_num_threads ());

return(0);

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Hello World with OpenMP

Compilation:

gcc -fopenmp hello_world.c

Output using 4 threads:

Starting execution with 1 threads:
Hello world says thread 2 of 4.
Hello world says thread 3 of 4.
Hello world says thread 1 of 4.

Hello world says thread O of 4.
Execution of 1 threads terminated.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Hello World with OpenMP

Using 4 threads:

Starting execution with 1 threads:
Hello world says thread 2 of 4.
Hello world says thread 3 of 4.
Hello world says thread 1 of 4.

Hello world says thread O of 4.
Execution of 1 threads terminated.
Who determines number of threads ?

» Environment variable: export OMP_NUM_THREADS=4

» Library function: void omp_set_num_threads(int)

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

OpenMP Execution Model

Classical Fork/Join:

Master thread executes serial code.

. - Master thread encounters parallel directive.

Master and slave threads concurrently
execute parallel block.

Yyvy Implicit barrier, wait for all threads to finish.

Master thread resumes serial execution.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Programming Multi-Core Systems with OpenMP

Loop Parallelization

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Simple Loop Parallelisation

Example: element-wise vector product:

void elem_prod(double *c, double *a, double *b, int len)

{
int 1i;
#pragma omp parallel for
for (i=0; i<len; i++)
{
c[i]l = ali]l =* b[il;
}
}

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Simple Loop Parallelisation

Example: element-wise vector product:

void elem_prod(double *c, double *a, double *b, int len)
{
int 1i;

#pragma omp parallel for

for (i=0; i<len; i++)

{
cli]l = alil * bl[il;
}
}
Prerequisite:

» No data dependence between any two iterations.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Simple Loop Parallelisation

Example: element-wise vector product:

void elem_prod(double *c, double *a, double *b, int len)
{
int 1i;

#pragma omp parallel for

for (i=0; i<len; i++)

{
cli]l = alil * bl[il;
}
}
Prerequisite:

» No data dependence between any two iterations.
» Caution: YOU claim this property !!

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Directive #pragma omp parallel for

What the compiler directive does for you:
> It starts additional worker threads depending on
OMP_NUM_THREADS.
> It divides the iteration space among all threads.

> It lets all threads execute loop restricted to their mutually
disjoint subsets.

> It synchronizes all threads at an implicit barrier.

» It terminates worker threads.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Directive #pragma omp parallel for

What the compiler directive does for you:
> It starts additional worker threads depending on
OMP_NUM_THREADS.
> It divides the iteration space among all threads.

> It lets all threads execute loop restricted to their mutually
disjoint subsets.

> It synchronizes all threads at an implicit barrier.

» It terminates worker threads.

Restrictions:

» The directive must directly precede for-loop.
» The for-loop must match a constrained pattern.

» The trip-count of the for-loop must be known in advance.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Shared and Private Variables

Example:

#pragma omp parallel for

for (i=0; i<len; i++)
{
res[i] = al[i] * b[il;

}

» Shared variable: one instance for all threads

» Private variable: one instance for each thread

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Shared and Private Variables

Example:

#pragma omp parallel for

for (i=0; i<len; i++)
{
res[i] = ali]l * b[il;

}

Who decides that res, a, b, and len are shared variables,
whereas i is private 77

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Shared and Private Variables

Example:

#pragma omp parallel for

for (i=0; i<len; i++)
{
res[i] = ali]l * b[il;

}

Who decides that res, a, b, and len are shared variables,
whereas i is private 77

Default rules:

» All variables are shared.

» Only loop variables of parallel loops are private.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y (double) j / (double) N;
depth[i,j] = mandelval(x, y, max);

}}

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y (double) j / (double) N;
depth[i,j] = mandelval(x, y, max);

T}

Properties to check:

» No data dependencies between loop iterations ?

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;

y = (double) j / (double) N;

depth[i,j] = mandelval(x, y, max);
P}

Properties to check:

» No data dependencies between loop iterations 7 YES !

» Trip-count known in advance ?

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval(x, y, max);
P}

Properties to check:

» No data dependencies between loop iterations 7 YES !
» Trip-count known in advance 7 YES !

» Function mandelval without side-effects 7

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less Simple Loop

Function mandelval:

int mandelval(double xx, double yy, int max)

{
int i =0;
double x = xx, y = yy;
while (x*x + y*y <= 4.0 && i < max) {
X = X*X - y*y + XX;
y = X*y + X*y + yy;
i++;
}
return i;
}

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;

depth[i,j] = mandelval(x, y, max);
o}

Properties to check:

No data dependencies between loop iterations 7 YES !
Trip-count known in advance 7 YES !
Function mandelval without side-effects 7 YES !

Only loop variable i needs to be private 7 NO !l
Check x,y,j

v vV v v

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less Simple Loop

Mandelbrot set:

double x, y;
int i, j, max = 200;
int depth[M,N];

#pragma omp parallel for private(x, y, j) shared(M, N, max)
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval(x, y, max);
} o}

Private clause:

» Directives may be refined by clauses.

» Private clause allows us to tag any variable as private.

» Caution: private variables are not initialised outside parallel
section !!

» Shared clause allows us to explicitly mark shared variables.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less, Less Simple Loop

Mandelbrot set with additional counter:
int total = 0;

for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval(x, y,
total = total + depth[i,j];

max) ;

}}

Programming Multi-Core Systems with OpenMP

Clemens Grelck, University of Amsterdam

Parallelisation of a Less, Less Simple Loop

Mandelbrot set with additional counter:
int total = 0;
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval(x, y, max);

total = total + depth[i,j];
oy

Problems:

» New variable total introduces data dependence.
» Data dependence could be ignored due to associativity.
» New variable total must be shared.

» Incrementation of total must avoid race condition.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Parallelisation of a Less, Less Simple Loop

Mandelbrot set with additional counter:

int total = 0;

#pragma omp parallel for private(x, y, j)
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {
x = (double) i / (double) M;
y = (double) j / (double) N;
depth[i,j] = mandelval(x, y, max);

#pragma omp critical
{
total = total + depthl[i,jl;
}
}

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Critical Regions

The critical directive:
» Directive must immediately precede new statement block.
» Statement block is executed without interleaving.

» Directive implements critical region.

Equivalence:

?pragma omp critical <j::i>> pthread_mutex_lock(&lock);
<statements>

<statements>
} pthread_mutex_unlock (&lock);

Programming Multi-Core Systems with OpenMP

Clemens Grelck, University of Amsterdam

Critical Regions

The critical directive:

» Directive must immediately precede new statement block.
» Statement block is executed without interleaving.

» Directive implements critical region.

Equivalence:

?pragma omp critical <j::i>> pthread_mutex_lock(&lock);

<statements>

<statements>
pthread_mutex_unlock (&lock);

}

Disadvantage:

» All critical regions in entire program are synchronised.

» Unnecessary overhead.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Critical Regions

The named critical directive
» Critical regions may be associated with names.
» Critical regions with identical names are synchronised.
» Critical regions with different names are executed concurrently.

Equivalence:

#pragma omp critical (name)

{
<statements>
}

pthread_mutex_lock(&name_lock);

<statements>
pthread_mutex_unlock (&name_lock);

Programming Multi-Core Systems with OpenMP

Clemens Grelck, University of Amsterdam

Reduction Operations

Specific solution: reduction clause

#pragma omp parallel for private(x, y, i, j) \
reduction (+:total)
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {

x = (double) i / (double) M;
y (double) j / (double) N;
depth[i,j] = mandelval(x, y, max);
total = total + depthl[i,jl;

Properties:

» Reduction clause only supports built-in reduction operations:
+,ox, T, &, |, &&, I

» User-defined reductions only supported via critical regions.

» Bit accuracy not guaranteed.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Shared and Private Variables Reloaded

Shared variables:

» One instance shared between sequential and parallel execution.

> Value unaffected by transition.

Private variables:

» One instance during sequential execution.
» One instance per worker thread during parallel execution.

» No exchange of values.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Shared and Private Variables Reloaded

Shared variables:

» One instance shared between sequential and parallel execution.

> Value unaffected by transition.

Private variables:

» One instance during sequential execution.
» One instance per worker thread during parallel execution.

» No exchange of values.

New: Firstprivate variables:

> Like private variables, but ...

» Worker thread instances initialised with master thread value.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Shared and Private Variables Reloaded

Example:

int a=1, b=2, c=3

#pragma omp parallel for private(a) \
firstprivate(b) \
shared (c)
for (i=0; i<10; i++) {
// before first iteration:

// a : ?? | b : ?? | ¢ : 7?7
a++; b++; c=i;

}

// a : 7?7 | b : 77 c : 77

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Shared and Private Variables Reloaded

Example:

int a=1, b=2, c=3

#pragma omp parallel for private(a) \
firstprivate(b) \
shared (c)
for (i=0; i<10; i++) {
// before first iteration:
// a : undef | b : 2 | ¢ : undef
a++; b++; c=i;

}

// a : 1] b : 2 | ¢ : undef

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Conditional Parallelisation

Problem:

» Parallel execution of a
loop incurs overhead:

» creation of worker
threads
» scheduling
» synchronisation barrier
» This overhead must be
outweighed by sufficient
workload.
» Workload depends on

» loop body,
» trip count.

Clemens Grelck, University of Amsterdam

Programming Multi-Core Systems with OpenMP

Conditional Parallelisation

Problem:

» Parallel execution of a
loop incurs overhead:

» creation of worker
threads
» scheduling
» synchronisation barrier
» This overhead must be
outweighed by sufficient
workload.
» Workload depends on

» loop body,
» trip count.

Clemens Grelck, University of Amsterdam

Example:

if (len < 1000) {
for (i=0; i<len; i++)
{
res[i] = al[i]l * b[il;
}
¥
else {
#pragma omp parallel for
for (i=0; i<len; i++)
{
res[i] = al[i] * b[il;
}
}

Programming Multi-Core Systems with OpenMP

Conditional Parallelisation

Introducing the if-clause:

if (len < 1000) {
for (i=0; i<len; i++) {
res[i] = al[i]l * b[il;
¥
}
else {
#pragma omp parallel for
for (i=0; i<len; i++) {
res[i] = al[i]l * b[i];

3 g

#pragma omp parallel for if (lemn >= 1000)
for (i=0; i<len; i++) {
res[i] = alil * b[il;

}

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Programming Multi-Core Systems with OpenMP

Scheduling

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Loop Scheduling

Definition:

» Loop scheduling determines which iterations are executed by
which thread.

Aim:

» Equal workload distribution

task 1

s
task 2 E=a

]
task 3 £

25
task 4 c

c

>

(7]

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Loop Scheduling

Problem:

» Different situations require different techniques

The schedule clause:

#pragma omp parallel for schedule(<type> [, <chunk>])
for (...)
{

}

Properties:
> Clause selects one out of a set of scheduling techniques.
» Optionally, a chunk size can be specified.

» Default chunk size depends on scheduling technique.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Loop Scheduling

Static scheduling:

#pragma omp parallel for schedule(static)

> Loop is subdivided into as many chunks as threads exist.
» Often called block scheduling.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Loop Scheduling

Static scheduling;:

#pragma omp parallel for schedule(static)

» Loop is subdivided into as many chunks as threads exist.

» Often called block scheduling.

Static scheduling with chunk size:

#pragma omp parallel for schedule(static, <n>)

» Loop is subdivided into chunks of n iterations.
» Chunks are assigned to threads in a round-robin fashion.

> Also called block-cyclic scheduling.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Loop Scheduling

Dynamic scheduling;:

#pragma omp parallel for schedule(dynamic, <n>)

» Loop is subdivided into chunks of n iterations.
» Chunks are dynamically assigned to threads on their demand.
> Also called self scheduling.

» Default chunk size: 1 iteration.

Properties:

» Allows for dynamic load distribution and adjustment.
» Requires additional synchronization.

» Generates more overhead than static scheduling.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Loop Scheduling

Dilemma of chunk size selection:
» Small chunk sizes mean good load balancing, but high
synchronisation overhead.

» Large chunk sizes reduce synchronisation overhead, but result
in poor load balancing.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Loop Scheduling

Dilemma of chunk size selection:
» Small chunk sizes mean good load balancing, but high
synchronisation overhead.

» Large chunk sizes reduce synchronisation overhead, but result
in poor load balancing.

Rationale of guided scheduling:

> In the beginning, large chunks keep synchronisation overhead
small.

» When approaching the final barrier, small chunks balance
workload.

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Loop Scheduling

Guided scheduling:

#pragma omp parallel for schedule(guided, <n>)

» Chunks are dynamically assigned to threads on their demand.

v

Initial chunk size is implementation dependent.

v

Chunk size decreases exponentially with every assignment.

v

Also called guided self scheduling.

v

Minimum chunk size: n (default: 1)

Example:

» Total number of iterations: 250
» Initial / minimal chunk size: 50 / 5

» Current chunk size: 80% of last chunk size:
50-40-32-26-21-17-14-12-10-8-6-5-5-4

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

Programming Multi-Core Systems with OpenMP

Outlook

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

What's More ?

More in OpenMP-2:

Decouple parallel regions from work sharing

v

v

Control synchronisation barriers

v

Task parallel sections

v

Low-level locks and condition variables

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

What's More ?

More in OpenMP-2:

Decouple parallel regions from work sharing

v

v

Control synchronisation barriers

v

Task parallel sections

v

Low-level locks and condition variables

More in OpenMP-3:

» Nested parallel regions
» Spawning and synchronisation of tasks

>

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

What's More ?

More in OpenMP-2:

Decouple parallel regions from work sharing

v

v

Control synchronisation barriers

v

Task parallel sections

v

Low-level locks and condition variables

More in OpenMP-3:

» Nested parallel regions
» Spawning and synchronisation of tasks

>

More information:

> Www.openmp.org

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

The End: Questions 7

Clemens Grelck, University of Amsterdam Programming Multi-Core Systems with OpenMP

	OpenMP at a Glance
	Loop Parallelization
	Scheduling
	Outlook

