University of Amsterdam Dr Clemens Grelck
SURFsara OpenMP and MPI
High Performance Computing and Big Data Jan 31, 2019

Programming Multi-Core Systems with OpenMP
Programming Scalable Systems with MPI

1 Experimenting with OpenMP

Consider the C function multimult below. Design a suitable main function that properly allocates and
de-allocates memory for the two vectors and measures the time spent in a single call to multimult
using a high precision timer (e.g. clock_gettime on Linux). Parallelise the multimult function using
OpenMP pragmas. Do not make use of any default rules, but make all clauses explicit.

void multimult(double *a, double *b, int len, int steps)
{
double c;

for (int t=1; t<=steps; t++) {
for (int i=0; i<len; i++) {
c = ali]l * b[il;
ali]l = ¢ * (double) t;
}
}
}

Run experiments with different vector lengths, different numbers of steps and different numbers of
threads up to the number of cores available. Experiment with different problem sizes starting with 1000
elements and increase the number of elements by an order of magnitude until you reach the memory
limit. Adjust the value for steps such that the program'’s runtime is at least several seconds, but does
not waste too many compute cycles. Use both your own machine and a single node of the SURFsara
cluster.

Write a report that shows your code, motivates the choice of pragmas and details the outcome of
the experiments with speedup graphs for the different settings. Only report on interesting experimental
parameters.

For running code on a cluster with batch job submission system, it is best to explicitly set the
number of threads in the code using the omp_set_num_threads() routine. Do not forget to activate
the compiler's OpenMP support and to switch on compiler optimisations at level -O2 (or higher).

2 Collective communication

Collective communication is a form of structured communication, where instead of a dedicated sender
and a dedicated receiver all MPI processes of a given communicator participate. A simple example is
broadcast communication where one MPI process sends a message to all other MPI processes in the
communicator. Write a C+MPI function (not pseudo code)

int MPI_Broadcast(void *buffer, /* INOUT : buffer address */
int count, /* IN : buffer size */
MPI_Datatype datatype, /* IN : datatype of entry x/
int root, /* IN : root process (sender) */
MPI_Comm communicator) /* IN : communicator */

that implements broadcast communication by means of point-to-point communication.

SARA
UNIVERSITY OF AMSTERDAM m
X

Each MPI process of the given communicator is assumed to execute the broadcast function with
the same message parameters and root process argument. The root process is supposed to send the
content of its own buffer to all other processes of the communicator. Any non-root process uses the
given buffer for receiving the corresponding data from the root process.

3 Collective communication with topology adaptation

One advantage of collective communication is that the implementation can take advantage of the
underlying physical network topology without making the application itself topology-specific. Rewrite
your MPI_Broadcast function such that it takes advantage of the underlying network topology.

With growing node counts a fully connected network topology is technically infeasible. Instead,
assume a l-dimensional ring topology, where each node only has direct communication links with its
two immediate neighbours with (circularly) increasing and decreasing MPI ranks. Message transfers
between non-neighbouring nodes require multiple redirections via intermediate nodes. Communication
cost can be assumed to be linear in the number of links involved.

Describe in detail how your code is adapted to the network topology. Devise a closed formula,
depending on the number of nodes, that describes the number of atomic communication events (sending
a message from one node to a neighbouring node) needed to complete one broadcast operation.

Deadline: Pair-wise submission by February 15, 2019, any time

SARA
UNIVERSITY OF AMSTERDAM m
X

	Experimenting with OpenMP
	Collective communication
	Collective communication with topology adaptation

