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HPC computing  
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• Big Data, Big Simulation, Big Science  
• Challenges  

•  Compute and storage  
•  Efficiency 

•  Performance vs. Energy  

• HPC focuses traditionally on performance, but now 
moving towards efficiency 
•  Traditional HPC: complex machines, on-demand 
•  Modern HPC: more and more based on existing machines, put 

together in dense clusters/datacenters 

• HPC is expanding to new application domains.  



SAR imaging 
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Sound ray tracing 
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• A collaboration with Dutch NLR 
• Simulate the sound propagation 

•   from an aircraft to receivers 

• Assess aircraft flyover noise during the aircraft take-off 
and approach procedures 



Sound ray tracing 
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BRIEFLY ON HARDWARE  
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Moore’s Law 
•  Gordon Moore (co-founder of Intel) predicted in 1965 that the 

transistor density of semiconductor chips would double roughly 
every 18 months. 

7 

“The complexity for minimum component costs has increased at a rate of 
roughly a factor of two per year ... Certainly over the short term this rate can 
be expected to continue, if not to increase....” Electronics Magazine 1965 



Evolution of processors 

Chip density can 
increase about 2x every 
2 years 
 
BUT 

•  Clock speed is not 
•  Power is not  
•  Instruction Level 

Parallelism is not  
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What does this mean in practice?  



New ways to use transistors 
Improve PERFORMANCE by using parallelism on-chip: 
multi-core (CPUs) and many-core processors (GPUs). 
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Parallelism ó HPC 
• Parallelism is mandatory for high performance 

•  Yesterday: clusters (and grids) 
•  Today: multi-/many-core processors  
•  Tomorrow:  massive multi-scale heterogeneous parallelism = 

clusters using different types of multi-/many-cores  

>95% of computing systems today are parallel!   

Main challenges: learn to program 
parallel machines and learn to use them 

efficiently!  
 



Why talk about GPUs? 
• GPUs are a steady market  

•  Gaming  
•  CAD-like activities  

•  Traditional or not …  
•  Visualisation  

•  Scientific or not … 

• GPUs are increasingly used for other types of applications  
•  Number crunching in science, finance, image processing 
•  (fast) Memory operations in big data processing  
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Massive parallelism => massive performance  

GPGPU ?! 
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Graphics in 1980 
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Graphics in 2015  
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GPUs in movies 
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•  From Ariel in Little Mermaid to Brave  



Why GPUs? 
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• Promise of performance beyond most other architectures  
•  CPUs  
•  Multi-core CPUs  
•  FPGAs 
•  …  

•  They are power efficient  
•  2-5x better than a CPU  

• What took us so long?   
•  These things are not easy to program …  



GPUs vs. supercomputers 
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TODO List 
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1.  Introduction 
2.  GPGPUs & hardware performance  
3.  CUDA & application performance  
4.  Advanced CUDA  

 



INTRODUCTION TO GPUS 
GPU = the processor  
GPGPU = general purpose computing on GPUs 

       (typically refers to non-graphics stuff)  



GPUs @ NVIDIA  
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GPUs @ ATI/AMD 
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GPUs @ ATI/AMD 
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NVIDIA vs AMD 
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NVIDIA vs AMD  
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NVIDIA vs. AMD  
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GPUs @ ARM 
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ON PERFORMANCE  



Performance [1]  
•  Latency/delay 

•  The time for one operation (instruction) to finish, L  
•  To improve: minimize L  

•  Lower is better 

•  Throughput  
•  The number of operations (instructions) per time unit, T 
•  To improve: maximize T 

•  Higher is better 
•  Thus, time per instruction decreases, on average  

• Example: 1 man builds a house in 10 days. 
•  Latency improvement: … 
•  Throughput improvement: …  
 



Performance [2]  
• How do we get faster computers? 

•  Faster processors and memory 
•  Increase clock frequency à latency boost  

•  Better memory techniques 
•  Use memory hierarchies à latency boost 
•  More memory closer to processor à latency boost 

•  Better processing techniques  
•  Use pipelining à throughput boost  

•  More processing units (cores, threads, …) 
•  Use parallelism/concurrency à throughput boost (only?)  

•  Accelerators  
•  Use specialized functional units à latency+throughput boost  



Hardware Performance metrics 
•  Clock frequency [GHz] = absolute hardware speed 

•  Memories, CPUs, interconnects 

•  Operational speed [GFLOPs] 
•  Operations per second 
•  single AND double precision  

•  Memory bandwidth [GB/s] 
•  Memory operations per second 

•  Can differ for read and write operations !  
•  Differs a lot between different memories on chip 

•  Power [Watt]   
•  The rate of consumption of energy  

•  Derived metrics 
•  FLOP/Byte, FLOP/Watt 
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Theoretical peak performance 
Peak =   chips * cores * vectorWidth * FLOPs/cycle *       
clockFrequency 

• Examples  
•  Intel Core i7 CPU 

2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs 
•  NVIDIA GTX 580 GPU 

1 chip * 16 SMs * 32 cores * 2 FLOPs/cycle * 1.544 GhZ = 1581 GFLOPs 
•  AMD HD 6970 

1 chip * 24 SIMD engines * 16 cores * 4-way vectors * 2 FLOPs/cycle * 0.880 
GhZ = 2703 GFLOPs 
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T12 

NV30 NV40 
G70 

G80 

GT200 

3GHz Dual 
Core P4 

3GHz 
Core2 Duo 

3GHz Xeon 
Quad 

GPU vs. CPU performance 
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Single vs. double precision?  



Main Memory bandwidth 
Throughput = memory bus frequency * bits per cycle * bus 
width 

•  Memory clock != CPU clock 
•  In bits, divide by 8 for GB/s 

• Examples: 
•  Intel Core i7 DDR3:  1.333 * 2 * 64 =    21 GB/s 
•  NVIDIA GTX 580 GDDR5:  1.002 * 4 * 384 = 192 GB/s 
•  ATI HD 6970 GDDR5:   1.375 * 4 * 256 = 176 GB/s 

33 



Memory bandwidths 
• On-chip memory can be orders of magnitude faster 

•  Registers, shared memory, caches, … 
•  E.g., AMD HD 7970 L1 cache achieves 2 TB/s (vs. 176GB/s for 

main memory) 

• Other memories: depends on the interconnect 
•  Intel’s technology: QPI (Quick Path Interconnect) 

•  25.6 GB/s 
•  AMD’s technology: HT3 (Hyper Transport 3) 

•  19.2 GB/s 
•  Accelerators: PCI-e 2.0  

•  8 GB/s 
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GPU vs. CPU performance  
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Power 
• Chip manufactures specify Thermal Design Power (TDP) 
• We can measure dissipated power 

•  Whole system 
•  Typically (much) lower than TDP 

• Power efficiency 
•  FLOPS / Watt 

• Examples (with theoretical peak and TDP) 
•  Intel Core i7:     154 / 160 =   1.0 GFLOPs/W 
•  NVIDIA GTX 580:   1581 / 244 =   6.3 GFLOPs/W 
•  ATI HD 6970:   2703 / 250 = 10.8 GFLOPs/W 
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Absolute hardware performance 
• Only achieved in the optimal conditions: 

•  Processing units 100% used 
•  All parallelism 100% exploited 
•  All data transfers at maximum bandwidth 

•  In real life 
•  No application is like this 
•  Can we reason about “real” performance? 
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HIGH-LEVEL 
OPERATIONAL VIEW 
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A GPU Architecture 
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Integration into host system 
•  Typically PCI Express 2.0 
•  Theoretical speed 8 GB/s 

•  Effective ≤ 6 GB/s 
•  In reality: 4 – 6 GB/s 

• V3.0 recently available 
•  Double bandwidth 
•  Less protocol overhead 
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A CPU die  
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A GPU die: Fermi  
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CPU vs. GPU 43 

Control 
ALU ALU 

ALU ALU 

Cache 

CPU 
Few complex cores 
Lots of on-chip memory 
Lots of control logic 

GPU 
many 

simple cores,  
little memory,  

little control 



Why so different?  
• Different goals produce different designs! 

•  CPU must be good at everything 
•  GPUs focus on massive parallelism  

•  Less flexible, more specialized  

• CPU: minimize latency experienced by 1 thread 
•  big on-chip caches 
•  sophisticated control logic 

• GPU: maximize throughput of all threads 
•  # threads in flight limited by resources => lots of resources 

(registers, etc.) 
•  multithreading can hide latency => no big caches 
•  share control logic across many threads 
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CPU vs. GPU 
• Movie 
•  The Mythbusters 

•  Jamie Hyneman & Adam Savage 
•  Discovery Channel 

• Appearance at NVIDIA’s NVISION 2008 
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NVIDIA GPUS 
ARCHITECTURE 
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Fermi 
• Consumer: GTX 480, 580 
• HPC: Tesla C2050 

•  More memory, ECC 
•  1.0 Tlop SP 
•  515 GFlop SP 

•  16 streaming 
multiprocessors (SM) 
•  GTX 580: 16 
•  GTX 480: 15 
•  C2050: 14 

• SMs are independent 
•  768 KB L2 cache 
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Fermi Streaming Multiprocessor (SM) 

•  32 cores per SM (512 cores total) 
•  64KB configurable   

L1 cache / shared memory 
•  32,768 32-bit registers 

48 



Kepler: SMX 
• Consumer:  

•  GTX680, GTX780, GTX-Titan 
• HPC  

•  Tesla K10..K40, K80 
• SMX features 

•  192 CUDA cores  
•  32 in Fermi 

•  32 Special Function Units (SFU) 
•  4 for Fermi  

•  32 Load/Store units (LD/ST)  
•  16 for Fermi  

• 3x Perf/Watt improvement 
• 4x more texture memory 
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Memory architecture (since Fermi) 
• Configurable L1 cache per SM 

•  16KB L1 cache / 48KB Shared memory 
•  48KB L1 cache / 16KB Shared memory 

• Shared L2 cache 
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Device memory 

L2 cache 

Host memory 
PCI-e 
bus 

registers 

L1 cache /  
shared mem 

registers 

L1 cache /  
shared mem …. 



Maxwell: SMM 
• Consumer: 

•  GTX 970, GTX 980, …  
• HPC: 

•  Tesla M40 

• SMM Features: 
•  4 subblocks of 32 cores 
•  Dedicated L1/LM per 64 cores  
•  Dispatch/decode/registers per 32 

cores 
• L2 cache: 2MB (~3x vs. Kepler) 
• 40 texture units  
• Lower power consumption 
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Pascal: SMP 
•   64 single-precision (FP32) CUDA Cores.  

•  Maxwell = 128  
•  Kepler = 192 

•  Focus on DP 
• Energy efficiency  
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Evolution in numbers  

GPU / Form Factor 
Kepler Maxwell Pascal Pascal 
GK110 / PCIe GM200 / PCIe GP100 / SXM2 GP100 / PCIe 

SMs 15 24 56 56 

FP32 CUDA Cores / SM 192 128 64 64 

FP32 CUDA Cores / GPU 2880 3072 3584 3584 

FP64 CUDA Cores / SM 64 4 32 32 

FP64 CUDA Cores / GPU 960 96 1792 1792 

Base Clock 745 MHz 948 MHz 1328 MHz 1126 MHz 

GPU Boost Clock 810/875 MHz  1114 MHz 1480 MHz 1303 MHz 

Single precision GFLOPS 5040 6844 10608 9340 

Double precision GFLOPS 1680 213 5304 4670 
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Evolution in numbers  

GPU / Form Factor 
Kepler Maxwell Pascal Pascal 
GK110 / PCIe GM200 / PCIe GP100 / SXM2 GP100 / PCIe 

Texture Units 240 192 224 224 

Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 
3072-bit HBM2 (12GB) 
4096-bit HBM2 (16GB) 

Memory Bandwidth 288 GB/s 288 GB/s 732 GB/s 
549 GB/s (12GB) 
732 GB/s (16GB) 

Memory Size Up to 12 GB Up to 24 GB 16 GB 12 GB or 16 GB 

L2 Cache Size 1536 KB 3072 KB 4096 KB 4096 KB 

Register File Size / SM 256 KB 256 KB 256 KB 256 KB 

Register File Size / GPU 3840 KB 6144 KB 14336 KB 14336 KB 

TDP 235 Watts 250 Watts 300 Watts 250 Watts 

Transistors 7.1 billion 8 billion 15.3 billion 15.3 billion 

GPU Die Size 551 mm² 601 mm² 610 mm² 610 mm² 

Manufacturing Process 28-nm 28-nm 16-nm 16-nm 
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PROGRAMMING MANY-
CORES 

55 



Parallelism 
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•  Threads 
•  Independent units of computation 
•  Expected to execute in parallel  
•  Write once, instantiate many times  

• Concurrent execution  
•  Threads execute in the same time if there are sufficient resources 

• Assume a processor P with 10 cores and an application A 
with: 
•  10 threads: how long does A take?  
•  20 threads: how long does A take? 
•  33 threads: how long does A take?  
 



Parallelism 

57 

• Synchronization = a thread’s execution must depend on 
other threads  
•  Barrier = all threads wait to get to barrier before they continue 
•  Shared variables = more threads RD/WR them  

•  Locks = threads can use locks to protect the WR sections   
•  Atomic operation = operation completed by a single thread at a 

time 

•  Thread scheduling = the order in which the threads are 
executed on the machine 
•  User-based: programmer decides  
•  OS-based: OS decides (e.g., Linux, Windows)  
•  Hardware-based: hardware decides (e.g., GPUs)  



Programming many-cores  
= parallel programming:  

•  Choose/design algorithm  
•  Parallelize algorithm  

•  Expose enough layers of parallelism  
•  Minimize communication, synchronization, dependencies  
•  Overlap computation and communication 

•  Implement parallel algorithm 
•  Choose parallel programming model  
•  (?) Choose many-core platform 

•  Tune/optimize application  
•  Understand performance bottlenecks & expectations  
•  Apply platform specific optimizations  
•  (?) Apply application & data specific optimizations   



PROGRAMMING GPUS IN 
CUDA  
Kernel = the parallel program  
Device code = manage the parallel program  
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CUDA 
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• CUDA: Scalable parallel programming 
•  C/C++ extensions 

•  Other wrappers exist  

• Straightforward mapping onto hardware 
•  Hierarchy of threads (to map to cores)  

•  Configurable at logical level  
•  Various memory spaces (to map to physical spaces) 

•  Usable via variable scopes  

• Scale to 1000s of cores & 100,000s of threads 
•  GPU threads are lightweight 
•  GPUs need 1000s of threads for full utilization 



CUDA Model of Parallelism 
• CUDA virtualizes the physical hardware 

•  A block is a virtualized streaming multiprocessor 
•  threads, shared memory 

•  A thread is a virtualized scalar processor  
•  registers, PC, state 

•  Threads are scheduled onto physical hardware without 
pre-emption 
•  threads/blocks launch & run to completion 
•  blocks must be independent 
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CUDA Model of Parallelism 
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Hierarchy of threads 
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Thread 

Block 

Grid 



Grids, Thread Blocks and Threads 
Grid 

Thread Block 0, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 



Grid 
Thread Block 0, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 0, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 0 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 1 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Thread Block 1, 2 

0,0 0,1 0,2 0,3 
1,0 1,1 1,2 2,3 
2,0 2,1 2,2 2,3 

Kernels and grids 
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•  Launch kernel (12 x 6 = 72 instances)  
myKernel<<<numBlocks,threadsPerBlock>>>(…);

•  dim3 threadsPerBlock(3,4);
•  threadsPerBlock.x = 3
•  threadsPerBlock.y = 4  
•  Each thread: 
(threadIdx.x, threadIdx.y)

•  dim3 numBlocks(2,3);
•  blockDim.x = 2
•  blockDim.y=3
•  Each block : 
(blockIdx.x,blockIdx.y)



Thread 

Per-thread 
Local Memory 

SM 

Per-SM 
Shared 
Memory 

Kernel 0 

Multiple Device Memory Scopes 
• Per-thread private memory 

•  Each thread has its own local memory 
•  Stacks, other private data, registers 
•  Accessible to a single thread only 

• Per-SM shared memory 
•  Small memory close to the processor,  
low latency 
•  Accessible to threads in the same block. 

• Device memory 
•  GPU frame buffer 
•  Accessible to any thread 
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Kernel 1 
Per-device 

Global 
Memory 

… 

… 



Memory spaces: Registers  
Example: 
__global__ void aKernel(float *C, float *A, float *B) {
    int tx = threadIdx.x; //local variable in registers
    float local_sum[4]; //small compile-time sized array 
in registers

  
Registers: 
•  Thread-local scalars or small constant size arrays are stored as 

registers 
•  Implicit in the programming model  
•  Behavior is very similar with local variables  
•  Not persistent: kernel ends, data is lost  
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Memory spaces: global memory 
Example: 
__global__ void matmul_kernel(float *C, //C points to global memory 

    float *A, //A points to global memory 
    float *B) //B points to global memory 

 
Global memory  
•  Allocated by the host program using cudaMalloc()  
•  Initialized by the host program using cudaMemcpy()or previous 

kernels 
•  Persistent = the values are retained between kernels  
•  Not coherent, writes by other threads might not be visible until 

kernel has finished 
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Memory spaces: Constant 
Example 
__constant__ float speed_of_light= 0.299792458; //scalars can be initialized 
directly 
__constant__ float2 vertices[NUM_VERTICES]; //initialized by a host function 
__global__ void cn_pnpoly(uint8_t* bitmap, float2* points, intn) { 
... 
for (intj=0; j<NUM_VERTICES; k = j++) { 
float2 vj= vertices[j]; //index j does not depend on threadIdx 
 
Constant memory: 
•  Statically defined by the host program using __constant__qualifier 
•  Defined as a global variable, visible only within the same translation unit 
•  Initialized by the host program using cudaMemcpyToSymbol() 
•  Read-only to the GPU, cannot be accessed directly by the host 
•  Values are cached in a special cache optimized for broadcast access by 

multiple threads simultaneously, access should not depend on threadIdx 
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Memory spaces: Shared  
Example: 
__global__ void matmul_kernel(float *C, float *A, float *B) { 
__shared__ float sh_A[tile_size][tile_size]; //2D array in shared memory 
for (k = 0; k < WIDTH; k += tile_size) { 
__syncthreads(); //wait for all threads in the block 
sA[ty][tx] = A[y*WIDTH + k + tx]; //fill shared memory with values 
__syncthreads(); //wait again 

Shared memory  
•  Variables have to be declared using __shared__qualifier, size known at 

compile time 
•  In the scope of thread block, all threads in a thread block see the same piece 

of memory 
•  Not initialized, threads have to fill shared memory with meaningful values 
•  Not persistent, after the kernel has finished, values in shared memory are lost 
•  Not coherent, __syncthreads()is required to make writes visible to other 

threads within the thread block  
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Using CUDA 

71 

•  Two parts of the code: 
•  Device code = GPU code = kernel(s) 

•  Sequential program  
•  Write for 1 thread, execute for all 

•  Host code = CPU code  
•  Instantiate grid + run the kernel 
•  Memory allocation, management, deallocation 
•  C/C++/Java/Python/… 

• Host-device communication  
•  Explicit / implicit via PCI/e  
•  Minimum: data input/output  



Processing flow 
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Image courtesy of Wikipedia 

Kernel  
runs here 

All this happens from  
the host code.  



Compiling CUDA  
•  nvcc is a compiler driver  
• Separates source code into:  

•  device code (runs on GPU)  
•  further processed by NVIDIA compiler  

•  host code (runs on CPU)  
•  further processed by host compiler (g++, cl.exe)  
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CUDA: kernels and launch 
•  Function qualifiers: 
__global__ void my_kernel() { } 
__device__ float my_device_func() { } 

• Execution configuration: 
dim3 gridDim(100, 50);  // 5000 thread blocks 
dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M 
total) 

my_kernel <<< gridDim, blockDim >>> (...); // Launch 
kernel 

• Built-in variables and functions valid in device code: 
dim3 gridDim;   // Grid   dimension 
dim3 blockDim;  // Block  dimension 
dim3 blockIdx;  // Block  index 
dim3 threadIdx; // Thread index 

 
void syncthreads(); // Thread synchronization 
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CUDA: Memory Allocation/Release 
• All memory buffers – CPU and GPU must be allocated 
• Host (CPU) manages device (GPU) memory: 

•  cudaMalloc(void **pointer, size_t nbytes) 
•  cudaMemset(void *pointer, int val, size_t 
count) 

•  cudaFree(void* pointer) 
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CUDA: Data Copies 
cudaMemcpy(void *dst, void *src,

    size_t nbytes,
    enum cudaMemcpyKind direction);

•  blocks CPU thread until all bytes have been copied 
•  doesn’t start copying until previous CUDA calls complete 

•  enum {  
cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice
} cudaMemcpyKind   

•  Non-blocking copies are also available 
•  cudaMemcpyAsync 
•  DMA transfers, overlap computation and communication 
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CUDA: dummy example 
int n = 1024; 
int nbytes = n * sizeof(int); 
int* dataCPU = (int *)malloc(nbytes); 
int* dataGPU; 
 
cudaMalloc(&dataGPU, nbytes); 
cudaMemset(dataGPU, 0, nbytes); 
 
cudaMemcpy(dataGPU, dataCPU, nbytes,   

    cudaMemcpyHostToDevice);  
myKernel<<<n/128,128>>>(n, dataGPU); 
cudaMemcpy(dataCPU, dataGPU, nbytes,   

    cudaMemcpyDeviceToHost);  
cudaFree(dataGPU); 
free(dataCPU); 
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EXAMPLE: VECTOR-ADD 
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Programming many-cores  
= parallel programming:  

•  Choose/design algorithm  
•  Parallelize algorithm  

•  Expose enough layers of parallelism  
•  Minimize communication, synchronization, dependencies  
•  Overlap computation and communication 

•  Implement parallel algorithm 
•  Choose parallel programming model  
•  (?) Choose many-core platform 

•  Tune/optimize application  
•  Understand performance bottlenecks & expectations  
•  Apply platform specific optimizations  
•  (?) Apply application & data specific optimizations   
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First CUDA program 
• Determine mapping of operations and data to threads 
• Write kernel(s)  

•  Sequential code  
•  Written per-thread  

• Determine block geometry  
•  Threads per block, blocks per grid  
•  Number of grids (>= number of kernels) 

• Write host code  
•  Memory initialization and copying to device  
•  Kernel(s) launch(es)  
•  Results copying to host   

• Optimize the kernels  
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Vector add: sequential 
 
 
 
 
 
void vector_add(int size, float* a, float* b, float* c) { 
    for(int i=0; i<size; i++) { 
        c[i] = a[i] + b[i];   
    } 
} 
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How do we parallelize this?  
• What does each thread compute? 

•  One addition per thread  
•  Each thread deals with *different* elements  
•  How do we know which element? 

•  Compute a mapping of the grid to the data 
•  Any mapping will do!  
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Vector add: Kernel 

// compute vector sum c = a + b 
// each thread performs one pair-wise addition 
__global__ void vector_add(float* A, float* B, float* C) { 
    int i = ? 
    C[i] = A[i] + B[i]; 
} 
 



Calculating the global thread index 

“global” thread index: 
 blockDim.x * blockIdx.x + threadIdx.x; 
 

  

84 

Grid 
Thread Block 0 

0 1 2 3 Thread Block 1 

0 1 2 3 Thread Block 2 

0 1 2 3 

blockDim.X 



85 

Grid 
Thread Block 0 

0 1 2 3 Thread Block 1 

0 1 2 3 Thread Block 2 

0 1 2 3 

blockDim.X 

Calculating the global thread index 

“global” thread index: 
 blockDim.x * blockIdx.x + threadIdx.x; 
 

     4      *     2      +     1    = 9 
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Vector add: Kernel 

// compute vector sum c = a + b 
// each thread performs one pair-wise addition 
__global__ void vector_add(float* A, float* B, float* C) { 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    C[i] = A[i] + B[i]; 
} 
 

Done with the 
kernel!  



Vector add: Launch kernel 
// compute vector sum c = a + b 
// each thread performs one pair-wise addition 
__global__ void vector_add(float* A, float* B, float* C) { 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    C[i] = A[i] + B[i]; 
} 
 
int main() { 
  // initialization code here ... 
  N = 5120; 
  // launch N/256 blocks of 256 threads each 
  vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC); 
  // cleanup code here ... 
} 
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Vector add: Launch kernel 
// compute vector sum c = a + b 
// each thread performs one pair-wise addition 
__global__ void vector_add(float* A, float* B, float* C) { 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    C[i] = A[i] + B[i]; 
} 
 
int main() { 
  // initialization code here ... 

  N = 5000;  // <- what happens? 
  // launch N/256 blocks of 256 threads each 
  vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC); 
  // cleanup code here ... 
} 
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Vector add: Launch kernel 
// compute vector sum c = a + b 
// each thread performs one pair-wise addition 
__global__ void vector_add(float* A, float* B, float* C) { 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    if (i<N) C[i] = A[i] + B[i]; 
} 
 
int main() { 
  // initialization code here ... 

  N = 5000;  // <- what happens? 
  // launch N/256 blocks of 256 threads each 
  vector_add<<< N/256+1, 256 >>>(deviceA, deviceB, deviceC); 
  // cleanup code here ... 
} 
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Vector add: Host 
int main(int argc, char** argv) { 
  float *hostA, *deviceA, *hostB, *deviceB, *hostC, 
*deviceC; 
  int size = N * sizeof(float); 
 
  // allocate host memory 
  hostA = malloc(size); 
  hostB = malloc(size); 
  hostC = malloc(size); 
 
  // initialize A, B arrays here... 
 
  // allocate device memory 
  cudaMalloc(&deviceA, size); 
  cudaMalloc(&deviceB, size); 
  cudaMalloc(&deviceC, size); 
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Vector add: Host 
 // transfer the data from the host to the device 
 cudaMemcpy(deviceA, hostA, size, 
cudaMemcpyHostToDevice); 
 cudaMemcpy(deviceB, hostB, size, 
cudaMemcpyHostToDevice); 
 
 // launch N/256 blocks of 256 threads each 
 vector_add<<<N/256, 256>>>(deviceA, deviceB, 
deviceC); 
 
 // transfer the result back from the GPU to the 
host 
 cudaMemcpy(hostC, deviceC, size, 
cudaMemcpyDeviceToHost); 
} 
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Done with the host 
code!  



ADVANCED CONCEPTS 
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Thread Scheduling 
• Order of threads within a block is undefined! 

•  Threads are grouped in warps (32 threads/warp)  
•  AMD calls it “a wavefront” (64 threads/wavefront)  

• Order in which thread blocks are mapped and scheduled 
is undefined! 
•  Blocks run to completion on one SM without preemption 
•  Can run in any order 

•  Any possible interleaving of blocks should be valid 
•  Can run concurrently OR sequentially 
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Global synchronization 
•  We launch many more blocks than physical SM’s. 
•  Each block might/should have more threads than the SM’s cores 

__global__ void my_kernel() {
    step1; // compute some values in a global array 
    // wait for *all* threads to finish  
    __my_global_barrier(); 
    step2; // use the array 
}

int main() {
  dim3 blockSize(32, 32);
  dim3 gridSize(100, 100, 100);
  my_kernel<<<gridDim, blockDim>>>();
}
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An example: parallel reduction 
• Given an array with data, “reduce” it to a single value 

•  The sum of all elements 
•  The min/max of all elements  

• Sequentially: O(n) 
•  In parallel? 

•  Tree-based algo. 
•  O(log n)   

•  Requires a barrier  
   after each step 
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Parallel reduction in CUDA* 
• One element per thread 
• We need to use multiple blocks 

•  Large arrays  
•  Good GPU utilization 

• We need global synchronization 
•  Synchronization inside blocks is possible. 
•  Synchronization between blocks is not possible!  

• Solution: decompose into multiple kernels 
•  Kernel launch serves as a global synchronization point 
•  Kernel launch has negligible HW overhead, low SW overhead  
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Parallel reduction in CUDA* 
• What you get is …  

• Other optimizations  
•  Use shared memory  
•  Increase granularity  
•  Avoid branching  
•  Improve data access patterns 
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Memory consistency 
• Device (global) memory is not serially consistent  

•  No ordering guarantees in shared/global memory Rd/Wr 

• Share data between streaming multiprocessors 
•  Potential write hazards!  

• Use atomics to avoid data races for global (and shared) 
memory variables! 

• Evolution: 
•  Fermi has reasonable atomics for both shared and global memory 
•  Kepler increases global memory atomics performance vs. Fermi  
•  Maxwell uses native support for shared memory atomics 

•  Much faster than Fermi and Kepler  
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Atomics 
• Guarantee that only a single thread has access to a piece 

of memory during an operation 
•  Ordering is still arbitrary 

• Different types of atomic instructions 
•  Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor 

• Both for device memory and shared memory 
• Much more expensive than load + operation + store  
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An example: image histogram 
•  The histogram of an image: the distribution of the pixels in 

the image.  
•  In practice: count the pixels of each color 
•  Useful image feature detection for image recognition. 
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An example: image histogram 
// Determine frequency of colors in a picture. 
// Colors have already been converted into integers 
// between 0 and 255. 
// Each thread looks at one pixel, 
// and increments a counter 
 
__global__ void histogram(int* colors, int* buckets) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int c = colors[i]; 
    buckets[c] += 1;  // incorrect!  
} 
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An example: image histogram 
// Determine frequency of colors in a picture. 
// Colors have already been converted into integers 
// between 0 and 255. 
// Each thread looks at one pixel, 
// and increments a counter atomically 
 
__global__ void histogram(int* colors, int* buckets) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 
    int c = colors[i]; 
    atomicAdd(&buckets[c], 1); 
} 
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CUDA: OCCUPANCY 
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Thread Scheduling 
• Order of threads within a block is undefined! 

•  Threads are grouped in warps (32 threads/warp)  
•  AMD calls it “a wavefront” (64 threads/wavefront)  

• Order in which thread blocks are mapped and scheduled 
is undefined! 
•  Blocks run to completion on one SM without preemption 
•  Can run in any order 

•  Any possible interleaving of blocks should be valid 
•  Can run concurrently OR sequentially 
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Warps = 32 threads  
•  Threads are scheduled in warps  

•  AMD calls them “wavefronts” 

• One warp => on one SM  
•  Same SM till completion  

• Scheduling 
•  GigaThread Unit : schedules blocks per SM’s  
•  Inside SM: warp scheduler(s) + 
   instruction dispatcher  

•  Replace warps that are stalled by warps waiting to compute 
•  Very fast context switching  



Thread Scheduling 
• SMs implement zero-overhead warp scheduling 

•  A warp is a group of 32 threads that runs concurrently on an SM 
•  At any time, the number of warps concurrently executed by an SM 

is limited by its number of cores.  
•  Warps whose next instruction has its inputs ready for consumption 

are eligible for execution 
•  Eligible Warps are selected for execution on a prioritized 

scheduling policy 
•  All threads in a warp execute the same instruction when selected 
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Stalling warps 
• What happens if all warps are stalled? 

•  No instruction issued → performance lost 

• Most common reason for stalling? 
•  Waiting on global memory 

•  If your code reads global memory every couple of 
instructions 
•  You should try to maximize occupancy 
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Occupancy 
Occupancy = Active Warps / Maximum Active Warps 

• Remember: resources are allocated for the entire 
block! 

• Resources are finite 
• Utilizing too many resources per thread may limit the 

occupancy 
• Potential occupancy limiters: 

• Register usage 
• Shared memory usage 
• Block size 
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Resource Limits 

• Pool of registers and shared memory per SM 
•  Each thread block grabs registers & shared memory 
•  If one or the other is fully utilized => no more thread blocks 
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How do you know what you’re using? 
• Use compiler flags to get register and shared memory 

usage 
•  “nvcc -Xptxas –v”  

• Use the NVIDIA Profiler  
• Plug those numbers into CUDA Occupancy Calculator 

• Maximize occupancy for improved performance  
•  Empirical rule! Don’t overuse!   
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Thread divergence - penalty?  
• Depends on the amount of divergence  

•  Worst case: 1/32 performance  
•  When each thread does something different  

• Depends on whether branching is data- or ID- dependent  
•  If ID – consider grouping threads differently   
•  If data – consider sorting  

• Non-diverging warps => NO performance penalty 
•  In this case, branches are not expensive …    

112 



CUDA: THREAD 
DIVERGENCE 
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Thread divergence 
“I heard GPU branching is expensive. Is this true?”  

__global__ void Divergence(float* dst,float* src )
{
    float value = 0.0f;
 
    if ( threadIdx.x % 2 == 0 )
// active threads : 50% 
        value = src[0] + 5.0f;
    else
// active threads : 50% 
        value = src[0] – 5.0f;

    dst[index] = value;
}



Execution  
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Worst case performance loss:   
 50% compared with the non divergent case. 



Another example  
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Performance penalty?  
• Depends on the amount of divergence  

•  Worst case: 1/32 performance  
•  When each thread does something different  

• Depends on whether branching is data- or ID- dependent  
•  If ID – consider grouping threads differently   
•  If data – consider sorting  

• Non-diverging warps => NO performance penalty 
•  In this case, branches are not expensive …    
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CUDA: MEMORY 
COALESCING 
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Memory Coalescing 
• Memory coalescing refers to combining multiple memory 

accesses into a single transaction 
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Caching vs. Coalescing 

121 

Caching  Coalescin
g 

vs. 



Consider the stride of your accesses 

__global__ void foo(int* input, float3* input2) {  
  int i = blockDim.x * blockIdx.x + threadIdx.x;
  // Stride 1, full bandwidth used!
  int a = input[i];
  // Stride 2, 50% of the bandwidth is wasted
  int b = input[2*i+1];
  // “Random” stride - ?? up to 7/8 bandwidth wasted
  int c = input[f(i)]; 
}
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Example: Array of Structures (AoS) 
Struct AoS{ 
    int key; 
    int value; 
    int flag; 
}; 
 
record *d_AoS_data; 
cudaMalloc((void**)&d_AoS_data, ...); 
 
kernel { 
 threadID = blockDim.x * blockIdx.x + threadIdx.x; 
 // …   
 d_AoS_data[threadID].value += i; // wastes bandwidth!  
 // … 
} 
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Example: Structure of Arrays (SoA) 
Struct SoA { 
    int* keys; 
    int* values; 
    int* flags; 
}; 
 
SoA d_SoA_data; 
cudaMalloc((void**)&d_SoA_data.keys, ...); 
cudaMalloc((void**)&d_SoA_data.values, ...); 
cudaMalloc((void**)&d_SoA_data.flags, ...); 
 
kernel { 
  threadID = blockDim.x * blockIdx.x + threadIdx.x; 
… 
  d_SoA_data.values[threadID] += i; // full 
bandwidth!  

… } 
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Memory Coalescing* 
• Group memory accesses in as few memory transactions 

as possible. 
•  128-byte or 32-byte long lines    

• Stride 1 access patterns are preferred!  
•  Other patterns can still get benefits  

• Structure of arrays is often better than array of structures 
• Unpredictable/ irregular access patterns  

•  Case-by-case performance impact 

• No coalescing => performance loss ~10x or more ! 
•  Caching might improve this impact …  
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CUDA: MEMORY 
COALESCING 
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Memory Coalescing 
• Memory coalescing refers to combining multiple 

memory accesses into a single transaction 
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Caching vs. Coalescing 
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Caching vs. Coalescing 
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Consider the stride of your accesses 

__global__ void foo(int* input, float3* input2) {  
  int i = blockDim.x * blockIdx.x + threadIdx.x;
  // Stride 1, full bandwidth used!
  int a = input[i];
  // Stride 2, 50% of the bandwidth is wasted
  int b = input[2*i+1];
  // “Random” stride - ?? up to 7/8 bandwidth wasted
  int c = input[f(i)]; 
}
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Example: Array of Structures (AoS) 
Struct AoS{ 
    int key; 
    int value; 
    int flag; 
}; 
 
record *d_AoS_data; 
cudaMalloc((void**)&d_AoS_data, ...); 
 
kernel { 
 threadID = blockDim.x * blockIdx.x + threadIdx.x; 
 // …   
 d_AoS_data[threadID].value += i; // wastes bandwidth!  
 // … 
} 
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Example: Structure of Arrays (SoA) 
Struct SoA { 
    int* keys; 
    int* values; 
    int* flags; 
}; 
 
SoA d_SoA_data; 
cudaMalloc((void**)&d_SoA_data.keys, ...); 
cudaMalloc((void**)&d_SoA_data.values, ...); 
cudaMalloc((void**)&d_SoA_data.flags, ...); 
 
kernel { 
  threadID = blockDim.x * blockIdx.x + threadIdx.x; 
… 
  d_SoA_data.values[threadID] += i; // full 
bandwidth!  

… } 
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Memory Coalescing* 
• Group memory accesses in as few memory transactions 

as possible. 
•  128-byte or 32-byte long lines    

• Stride 1 access patterns are preferred!  
•  Other patterns can still get benefits  

• Structure of arrays is often better than array of structures 
• Unpredictable/ irregular access patterns  

•  Case-by-case performance impact 

• No coalescing => performance loss 10 – 30x ! 
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CUDA: USING SHARED 
MEMORY 
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Using shared memory 
• Equivalent with providing software caching 

•  Explicit: Load data to be re-used in shared memory   
•  Use it for computation  
•  Explicit: Store results back to global memory  

• All threads in a block share memory 
•  Load/Store: using all threads  
•  Barrier: __syncthreads  

•  Guard against using uninitialized data – not all threads have finished 
loading data to shared memory  

•  Guard against corrupting live data – not all threads have finished 
computing  
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A Common Programming Strategy 

• Partition data into subsets that fit into shared memory 
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A Common Programming Strategy 

• Handle each data subset with one thread block 

137 



A Common Programming Strategy 

•  Load the subset from device memory to shared memory, 
using multiple threads to exploit memory-level parallelism 
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A Common Programming Strategy 

• Perform the computation on the subset from shared 
memory 
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A Common Programming Strategy 

• Copy the result from shared memory back to device 
memory 
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Caches vs. Shared Memory 
• Since Fermi, NVIDIA GPUs feature BOTH hardware L1 

caches and shared memory per SM 
•  They share the same space   

•  ¾ Cache + ¼ Shared Memory  OR  
•  ¼ Cache + ¾ Shared Memory 

•  L1 Cache 
•  Hardware caching enabled  

•  The HW decides what goes in or out and when  

• Shared memory  
•  Software manages what goes in/out  
•  Allows more complex access patterns to be cached  
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Example: Matrix multiplication 
• C = A * B  

•  C(i,j) = sum(dot(row(A,i),col(B,j)))  

• Parallelization strategy  
•  Each thread computes one C element 
•  2D kernel 

142 

B 

C A 



Matrix multiplication implementation 
__global__ void mat_mul(float *a, float *b,  
                        float *c, int width)  
{  
  // calc row & column index of output element  
  int row = blockIdx.y*blockDim.y + threadIdx.y;  
  int col = blockIdx.x*blockDim.x + threadIdx.x; 
 
float result = 0;  
 

  // do dot product between row of a and column of b  
  for(int k = 0; k < width; k++) { 
      result += a[row*width+k] * b[k*width+col]; 
} 

  c[row*width+col] = result;  
}  
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Matrix multiplication performance 
Loads per dot product 
term 

2 (a and b)  = 8 bytes 

FLOPS 2 (multiply and add) 
AI 2 / 8 = 0.25 
Performance GTX 580 1581 GFLOPs 
Memory bandwidth GTX 
580 

192 GB/s 

Attainable performance 192 * 0.25 = 48 
GFLOPS 

Maximum efficiency 3.0 % of theoretical 
peak 
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Data reuse 
• Each input element in A and B is 

read WIDTH times 
•  IDEA: 

•  Load elements into shared memory 
•  Have several threads use local version to 

improve memory bandwidth  
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Using shared memory 
• Partition kernel loop into phases  
•  In each thread block, load a tile of both 

matrices into shared memory each 
phase 

• Each phase, each thread computes a 
partial result 
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Matrix multiply with shared memory 
__global__ void mat_mul(float *a, float *b,  
                      float *c, int width) { 

  // shorthand  
  int tx = threadIdx.x, ty = threadIdx.y; 
  int bx = blockIdx.x,  by = blockIdx.y; 
 

  // allocate tiles in shared memory  
  __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];  
  __shared__ float s_b[TILE_WIDTH][TILE_WIDTH]; 
 

  // calculate the row & column index from A,B 
  int row = by*blockDim.y + ty;  
  int col = bx*blockDim.x + tx; 
 
float result = 0;   
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Matrix multiply with shared memory 
  // loop over input tiles in phases, p = crt. phase 
  for(int p = 0; p < width/TILE_WIDTH; p++) { 
    // collaboratively load tiles into shared memory 
    s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)]; 
    s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col]; 
// barrier: ALL writes to shared memory finished  
    __syncthreads(); 
 

    // dot product between row of s_a and col of s_b  
    for(int k = 0; k < TILE_WIDTH; k++) { 
      result += s_a[ty][k] * s_b[k][tx]; 
  } 

// barrier: ALL reads of shared memory finished 
   __syncthreads();  
  } 
  

  c[row*width+col] = result;  
} 
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Use of Barriers in mat_mul 
•  Two barriers per phase:  

•  __syncthreads after all data is loaded into shared memory  
•  __syncthreads after all data is read from shared memory  

•  Second __syncthreads in phase p guards the load in phase p+1  

•  Formally, __synchthreads is a barrier for shared memory 
for a block of threads: 

 
“void __syncthreads();  
waits until all threads in the thread block have reached this 
point and all global and shared memory accesses made by 
these threads prior to __syncthreads() are visible to all 
threads in the block.” 
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Matrix multiplication performance 
Original shared memory 

Global loads 2N3 * 4 bytes (2N3 / TILE_WIDTH) * 4 
bytes 

Total ops 2N3 2N3 

AI 0.25 0.25 * TILE_WIDTH 
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Performance GTX 580 1581 GFLOPs 

Memory bandwidth GTX 580 192 GB/s 

AI needed for peak 1581 / 192 = 8.23 

TILE_WIDTH required to achieve 
peak 

0.25 * TILE_WIDTH = 8.23, 
TILE_WIDTH = 32.9 



CUDA: STREAMS 



Overlap Computation and Communication  
• Main idea: while executing a kernel, bring data in for the 

next kernel: 



What are streams? 
• Stream = a sequence of operations that execute on the 

device in the order in which they are issued by the host 
code.  

 
• Same stream: In-Order execution 
• Different streams: Out-of-Order execution 

• Default stream = Synchronizing stream 
•  No operation in the default stream can begin until all previously 

issued operations in any stream on the device have completed.  
•  An operation in the default stream must complete before any other 

operation in any stream on the device can begin. 
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Default stream: example 

 
•  All operations happen in the same stream  
•  Device (GPU) 

•  Synchronous execution 
•  all operations execute (in order), one after the previous has finished 

•  Unaware of CpuFunction()
•  Host (CPU)  

•  Launches increment and regains control  

•  *May* execute CpuFunction *before* increment has finished 

•  Final copy starts *after* both increment and CpuFunction() 
have finished 
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cudaMemcpy(d_a, a, numBytes,cudaMemcpyHostToDevice);
 increment<<<1,N>>>(d_a);
 CpuFunction(b);
cudaMemcpy(a, d_a, numBytes,cudaMemcpyDeviceToHost);
 



Non-default streams 
• Enable asynchronous execution and overlaps 

•  Require special creation/deletion of streams 
•  cudaStreamCreate(&stream1)
•  cudaStreamDestroy(stream1)

•  Special memory operations 
•  cudaMemcpyAsync(deviceMem, hostMem, size,  

cudaMemcpyHostToDevice, stream1)
•  Special kernel parameter (the 4th one) 

•  increment<<<1, N, 0, stream1>>>(d_a)
• Synchronization 

•  All streams  
•  cudaDeviceSynchronize()

•  Specific stream:  
•  cudaStreamSyncrhonize(stream1) 
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Computation vs. communication 
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//Single stream, numBytes = 16M, numElements = 4M
cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);  
kernel<<blocks,threads>>(d_a, firstElement);
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

C1060 (pre-Fermi): 12.9ms 

C2050 (Fermi):  9.9ms 



Computation-communication overlap[1]* 
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for (int i = 0; i < nStreams; ++i) {
  int offset = i * streamSize;
  cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes, 
stream[i]);
  kernel<<blocks,threads,0,stream[i]>>(d_a, offset);
  cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes, 
stream[i]);
}

C1060 (pre-Fermi): 13.63 ms (worse than sequential)   

C2050 (Fermi): 5.73 ms (better than sequential) 

https://github.com/parallel-forall/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu 



Computation-communication overlap[2]* 
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for (int i = 0; i < nStreams; ++i) offset[i]=i * streamSize;
for (int i = 0; i < nStreams; ++i)
   cudaMemcpyAsync(&d_a[offset[i]], &a[offset[i]], streamBytes,   
      cudaMemcpyHostToDevice, stream[i]);

for (int i = 0; i < nStreams; ++i) 
kernel<<blocks,threads,0,stream[i]>>(d_a, offset);

for (int i = 0; i < nStreams; ++i) 
   cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes,
       cudaMemcpyDeviceToHost, stream[i]);

C1060 (pre-Fermi): 8.84 ms (better than sequential)  

C2050 (Fermi): 7.59 ms (better than sequential, worse than v1) 



CUDA: MANY OTHER 
FEATURES  
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Kepler: Dynamic parallelism 
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Kepler: Hyper-Q 
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Kepler GK110: GPU Direct  
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Unified memory  

163 



SUMMARY 
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Take home message 
• GPUs are massively parallel architectures with limited 

flexibility, but very high throughput  
• Pro’s: 

•  Much higher compute capabilities  
•  Higher bandwidth  

• Con’s  
•  Limited on-card memory  
•  Low-bandwidth communication with host  

• Debate-able  
•  Programmability & productivity  
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Open research questions 
• Shall we port all applications on GPUs?  

•  If yes – can we automate the process? 
•  If not – can we decide how to select?  

• Shall we use GPUs in large-scale systems?  
• Shall we use heterogeneous CPU+GPU systems? 
• Can we improve the GPU design …  

•  For HPC?  
•  For other application domains?  
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Questions? Comments? Suggestions? 
• A.L.Varbanescu@uva.nl  
 
… also if you want to work on GPU-related projects OR in a 
team that works on heterogeneous computing. 
 
… All you have to do is ask J  
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