GPU COMPUTING

Part 1

Ana Lucia Varbanescu (UvA)

.z
HPC computing

- Big Data, Big Simulation, Big Science
- Challenges

- Compute and storage

- Efficiency

- Performance vs. Energy
- HPC focuses traditionally on performance, but now
moving towards efficiency
- Traditional HPC: complex machines, on-demand

- Modern HPC: more and more based on existing machines, put
together in dense clusters/datacenters

- HPC is expanding to new application domains.

SAP imaging

100

200

300}

400

500

600

700

800F

900}

1000 -/ i N
0 100 200 300 400 500 600 700 800 900 1000

N, S
Sound ray tracing

A collaboration with Dutch NLR @‘é
- Simulate the sound propagation P

- from an aircraft to receivers

- Assess aircraft flyover noise during the aircraft take-off
and approach procedures

Altitude, km

o
o)

©
9

o
o

©
U

o

o
W

©
)

o
=

Sound ray tracing

1
=
o

1
o

330 340 350
Sound speed, nvs

(a)

Relative distance from source, km

(b)

N
o

Launch Angle [deg]

Workload (# iterations)

-

v

Ray ID
(parallelization dimension)

BRIEFLY ON HARDWARE

Moore’ s Law

- Gordon Moore (co-founder of Intel) predicted in 1965 that the
transistor density of semiconductor chips would double roughly
every 18 months.

Copen?™
-
&

4 -1_1
169

e |

b= bl st il

1 A

- '7 *f'] ,«' |
3 1 ‘-I— b M -]
- (éx

Evolution of processors

10,000,000

/
4000000 -/ Chip density can

Intel CPU Trenq‘s "£ " increase about 2x every

{sources: Intel, Wikipedia, K. Olukotun} -
100,000

. ' 2 years

BUT
1,000 “ . Clock speed is not

> Power is not
100 /;-—‘-M/ Instruction Level

Parallelism is not
0 /

AA

®m Transistors (000) -
@ Clock Speed (MHz)
A Power (W)
°

0
1970 1975 1980 1985 1990 1995 2000 L

What does this mean in practice?]

New ways to use transistors

Improve PERFORMANCE by using parallelism on-chip:
multi-core (CPUs) and many-core processors (GPUSs).

D
Parallelism << HPC

- Parallelism is mandatory for high performance
- Yesterday: clusters (and grids)
- Today: multi-/many-core processors

- Tomorrow: massive multi-scale heterogeneous parallelism =
clusters using different types of multi-'/many-cores

>95% of computing systems today are parallel!

Main challenges: learn to program
parallel machines and learn to use them
efficiently!

| B
Why talk about GPUs"?

- GPUs are a steady market
- Gaming
- CAD-like activities
- Traditional or not ...

- Visualisation
- Scientific or not ...

GPUs are increasingly used for other types of applications
- Number crunching in science, finance, image processing

- (fast) Memory operations in big data processing

12

GPGPU !

Massive parallelism => massive performance

e (....4.

- »ol...ﬁ.Mi,ﬂf.ﬁw.v.—H.v!-l..\.a
R Y R LT

Lig Ao .

GPUs In movies

Brave

I N
Why GPUs?

- Promise of performance beyond most other architectures
- CPUs
- Multi-core CPUs
- FPGAs

- They are power efficient
- 2-5x better than a CPU

- What took us so long?
- These things are not easy to program ...

GPUs vs. supercomputers

100 pflops
—m— fastest supercomputer in the world
10 pflops 4 —m— nr. 500 supercomputer in the world
—m— 1 single Graphics Processing Unit
1 pflops
100 tflops
10 tflops
1 tflops
100 gflops
10 gflops
1 gflops
100mﬂ0p3 rrrJrrrrfrrrrfrrrrrrrrrrrrrrrrrrrrrrrrJrrrrrrrrrrrrrrri
(a2} w N~ (e} - ™ w0 N~ (e} - (a2} w N~ (o))
» o o py — — — —
o)} 1)) o o)) IS o o o o b o o o o
-~ -~ -~ ~ N N AN N N AN N N

-5
TODO List

lntroduction
GPGPUs & hardware performance
CUDA & application performance

Advanced CUDA

s Wb =

INTRODUCTION TO GPUS

GPU = the processor
GPGPU = general purpose computing on GPUs ' =

nvibDl

(typically refers to non-graphics stuff)

\ 2=

48

36

24

12

GPUs @ NVIDIA

Tesla

2008

2012

Maxwell

2014

2

/

2016

' Pascal
Mixed Precision
3D Memory
NVLink

2018

GPUs @ ATI/AMD

Celebrating 30 Years of Graphics Innovation:

The Evolution of AMD Radeon GPUs™

| Introduction of the Rade
the world's first high vol
low-k chips.

Radeon™ graphics technology debuts: 2003

leading product for high-end gaming.

2000

Introduction of Mach32™ first ATl releases industry's first 3D graphics
integrated graphics controller and chip, first combination graphics and TV Radeon™ 8500 launches, the first DirectX®
32-bit “true color” graphics tuner card, and first chip to display 8.1GPU and our first GPU with
EGA Wonder™ and VGA Wonder™ debut accelerator in one chip. computer graphics on a television. programmable pixel and vertex processors.

1987 1992
! !

-— ¢ ¢

1994

Introduction of Mach64™: first |
graphics boards to accelerate
full-motion video.

GRAPHICS ACCELERATORS.

Nod/
I
1985 <>
ATl develops its first graphics t J

controller and first graphics * :
e 1991

board product.
Mach8™ chip and board products are

Launch of the Rage Fury

1997 MAXX, the world's first dual 2002

GPU card and introduces

] 1 alternate frame rendering.
First Month

introduced: first products to process w
This product wins 8 industry awards gaptics ndependentlyofthe CPL. 1 MI"'O"
for innova.tion and design.signifying J
business 23 bons e sty (ctober 1997
First month to ship Radeon™ 9700 Pro launches: the world's

1 million boards! first DirectX® 9 graphics processor.

GPUs @ ATI/AMD

it

Introduction of the Radeon™ 9600 XT:
the world's first high volume 0.13um
low-k chips.

s technology debuts:
for high-end gaming.

)00

Radeon™ 8500 launches, the first DirectX®
8.1GPU and our first GPU with

programmable pixel and vertex processors. CrossFire Technology first introduced.

2001 2005
J]

Introduction of the
Radeon™ X800 XL: first
110nm GPU.

ch of the Rage Fury
the world's first dual
ard and introduces
ate frame rendering.

Radeon™ 9700 Pro launches: the world's
first DirectX® 9 graphics processor.

Launch of Radeon™ HD 6990,
the fastest discrete graphics
card in the world.

Radeon HD 2000 Series launches,
featuring our first unified shader product.

Radeon 4890 launches, the

Launch of Radeon™ HD 5970, the world’s
first DirectX® 11 card and the fastest
graphics card in the world to date.

AMDQ + 4]

AMD acquires ATI to create a new,
innovative processing powerhouse.

Launchuf‘

Radeon HD
7990, the fastest

3 desktop graphics
~# solution in the world,

designed for enthusiasts.
2013

2009 'Laun(h of Radeon™ HD 7970 GHz

Edition, the world's fastest and
most versatile graphics card.

Eyefinity multi-display technology first introduced,
enabling seamless connections of up to six ultra HD
displays for a stunning, new PC experience.

Arrival of Mantle, a groundbreaking
graphics API that promises to transform
the world of game development to help

bring better, faster games to the PC.

2013

Introduction of
the Radeon R7 and R9
Series graphics cards, first to
support a new era of 4K gaming.

2013

S —

<K

What’s Next?

Find out on 08.23.14

— o

2014

Launch of Radeon R9 295X2, the
world’s fastest and most

powerful graphics card
- the current
GPU king of
the hill.

AMDA\

©2014 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD arrow logo, Radeon and combinations thereof, are trademarks
of Advanced Micro Devices, Inc. Al other products names are for reference only and may be trademarks of their respective owners,

NVIDIA vs AMD
=0 MO =D S

Radeon HD 5000 Radeon HD 6000 Radeon HD 7000 Radeon R9 290
L] L

-~ -~ I -
GeForce GTX 400 GeForce GTX500 GeForce GTX600 GeForce GTX700 GeForce GTX 900

e e S =S /=0

NVIDIA vs AMD

AMD Radeon Graphics Roadmap

7200, $449 HD 7970 GHz Edition

6700, $399 HD 7970

GTX 680 6300, $499

6150, $299 HD 7950
GTX 670 5650, $399

5000, $229 HD 7870 GHz Edition GTX 660 Ti 5000, $299

4200, $189 HD 7850 GTX 660 4350, $229

2750, $119 HD 7770 GHz Edition GTX 650 Ti 2900, $149

@
@)
=
©
=
O
) =
)
a

2050, $99 HD 7750 GTX 650 2000, $109

GT 640 1200, $89
3DMark Fire Strike 3DMark Fire Strike
Performance, Price Performance, Price

3 | UNDER EMBARGO UNTIL FEB4, 2013 @ 12

I

Radeon HD 7930 GefForce GTX 970

Gpu Gpu
1,050 MHz 800 MHz
1.664 1.792
58.8 GPixel/s 25.6 GPixel/s
3.494 GFLOPS 2,867 GFLOPS
As you can see nvidiais

great choise under 311$

GPUs @ ARM

ARM Mali Graphics Processor Generations

ARMMALI >

4

Mali-G71

Unified shader cores, scalar ISA, clause execution, full coherency, Vulkan, OpenCL

MIDGARD Mali-T700 GPU series Mali-T800 GPU series

Unified shader cores, SIMD ISA, OpenGL ES 3.x, OpenCL,Vulkan

Mali-200 Mali-300 Mali-400 Mali-450 Mali-470

Separate shader cores, SIMD ISA, OpenGL ES 2.x

ARM

©ARM2016
EMBARGOED UNTIL I Ipm EDT on Sunday, May 29

ON PERFORMANCE

Performance [1]

- Latency/delay
- The time for one operation (instruction) to finish, L
- To improve: minimize L
- Lower is better
- Throughput
- The number of operations (instructions) per time unit, T
- To improve: maximize T
- Higher is better
- Thus, time per instruction decreases, on average
- Example: 1 man builds a house in 10 days.
- Latency improvement: ...
- Throughput improvement: ...

Performance [2]

- How do we get faster computers?
- Faster processors and memory
- Increase clock frequency - latency boost
- Better memory techniques
- Use memory hierarchies - latency boost
- More memory closer to processor - latency boost
- Better processing techniques
- Use pipelining = throughput boost
- More processing units (cores, threads, ...)
+ Use parallelism/concurrency - throughput boost (only?)
- Accelerators
- Use specialized functional units - latency+throughput boost

Hardware Performance metrics

- Clock frequency [GHZz] = absolute hardware speed
- Memories, CPUs, interconnects

- Operational speed [GFLOPs] Name FLOPS
- Operations per second
- single AND double precision yottaFLOPS 1024

1
- Memory bandwidth [GBI/s] zettaFLOPS 102

- Memory operations per second exaFLOPS 1018
- Can differ for read and write operations !
- Differs a lot between different memories on chip petaFLOPS 1015
- Power [Watt] teraFLOPS 10'2
- The rate of consumption of energy gigaFLOPS 102
- Derived metrics megaFLOPS 10°

- FLOP/Byte, FLOP/Watt
kiloFLOPS 10°

Theoretical peak performance

Peak = chips * cores * vectorWidth * FLOPs/cycle *
clockFrequency

- Examples
- Intel Core i7 CPU
2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs
- NVIDIA GTX 580 GPU
1 chip * 16 SMs * 32 cores * 2 FLOPs/cycle * 1.544 GhZ = 1581 GFLOPs

- AMD HD 6970

1 chip * 24 SIMD engines * 16 cores * 4-way vectors * 2 FLOPs/cycle * 0.880
GhZ = 2703 GFLOPs

.
GRLLvs. CPU performance

5750

5500 _
5250 GeForce 780 Ti ’
5000 «=w==NVIDIA GPU Single Precision N
e==mNVIDIA GPU Double Precision

4750
4500 esp=|ntel CPU Double Precision W
4250 emgmm|ntel CPU Single Precision -

/
= /
/

3500

3250 o
3000 GeForce GTX 680 /

[Single vs. double precision?

y e L B
2000 I o B /

1750 R
1500 G Tesla K20X

Q)

_ GeFQrce 6800 Ultra
250 GeForce FX 5800

" Pentium 4 Bloomfield
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

. S
Main Memory bandwidth

Throughput = memory bus frequency * bits per cycle * bus
width

- Memory clock = CPU clock

- In bits, divide by 8 for GB/s

- Examples:
- Intel Core i7 DDR3: 1.333*2*64= 21GB/s
- NVIDIA GTX 580 GDDR5: 1.002 * 4 * 384 = 192 GB/s
- ATI HD 6970 GDDRS: 1.375 %4 * 256 =176 GB/s

. S
Memory bandwidths

- On-chip memory can be orders of magnitude faster
- Registers, shared memory, caches, ...

- E.g., AMD HD 7970 L1 cache achieves 2 TB/s (vs. 176GB/s for
main memory)

- Other memories: depends on the interconnect
- Intel’s technology: QPI (Quick Path Interconnect)
- 25.6 GB/s
- AMD'’s technology: HT3 (Hyper Transport 3)
- 19.2 GB/s

- Accelerators: PCl-e 2.0
- 8 GB/s

GPU vs, CPU performance

Theoretical G
360
GeForce 780 Ti
330
300 oCPU Tesla K
270 === GeForce GPU

Tesla K20X
240 = =w=Tesla GPU

210

GeForce GTX 480
180

GeForce GTX 680
Tesla M2090

150 GeForce GTX 280
Tesla C2050

120

GeForce 8800 GTX
90

Tesla C1060
esla Ivy Bridge

GeForce 7800 GTX Sandy Bridge

60
GeForce 6800 GT

30
GeForce FX SQJJO

0 -

Bloomfield

Prescott Woodcrest
Westmere

orthWood T T T rtolwn T T T 1
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Power

- Chip manufactures specify Thermal Design Power (TDP)

- We can measure dissipated power
- Whole system
- Typically (much) lower than TDP

- Power efficiency
- FLOPS / Watt

- Examples (with theoretical peak and TDP)
- Intel Core i7: 154 /160 = 1.0 GFLOPs/W
- NVIDIA GTX 580: 1581 /244 = 6.3 GFLOPs/W
- ATl HD 6970: 2703 / 250 = 10.8 GFLOPs/W

Absolute hardware performance

- Only achieved in the optimal conditions:
- Processing units 100% used
- All parallelism 100% exploited
- All data transfers at maximum bandwidth

- In real life
- No application is like this
- Can we reason about “real” performance?

HIGH-LEVEL
OPERATIONAL VIEW

A GPU Architecture
)

Execution Queue
Control ' '
Dusal Warp e

(448 o
CPU § = ‘ = = = =
. J @ & @
3 £
:)
== EE =) =
Host .. , —— -— "m 4
Memory _
_ _ Levelzgache _ _)
I s 3 s s
! h DMA Il Device Memory I

©2010 The Portland Group, Inc.

Integration into host system

- Typically PCI Express 2.0

- Theoretical speed 8 GB/s
- Effective < 6 GB/s
- In reality: 4 — 6 GB/s
- V3.0 recently available
- Double bandwidth
- Less protocol overhead

f/

x16

A CPU die

Jallny 248
System
Agent,
Display

Engine &

- “m re .5 Memo
rocessor . e - - 2§ o ;conuolzr

. raphics

including

TESEE S8 B8 SRR S Displ;:ilplccjf
Lo oo RIS
: A IFEEIEIFEE I

"’.' Hem“y COﬂth‘lef /O ‘. -'n”"u'.“-',""".

Ferm

el B
N "L b el el Y,

palopelipe

A GPU die

il el o tieTie +5 e LSRR
. M - G T — . ——

-
o

o

CPU vs. GPU

Lots of on-chip memory

Few complex cores
3 Lots of control logic

CPU

Cache
many

simple cores,
little control

little memory,

. S
Why so different?

- Different goals produce different designs!
- CPU must be good at everything

- GPUs focus on massive parallelism
- Less flexible, more specialized

- CPU: minimize latency experienced by 1 thread
- big on-chip caches
- sophisticated control logic

- GPU: maximize throughput of all threads

- # threads in flight limited by resources => lots of resources
(registers, etc.)

- multithreading can hide latency => no big caches
- share control logic across many threads

-5
CPU vs. GPU

- Movie
- The Mythbusters

- Jamie Hyneman & Adam Savage
- Discovery Channel

- Appearance at NVIDIA's NVISION 2008

?

el M THBUSTERS

Fermi

Consumer: GTX 480, 580

HPC: Tesla C2050
More memory, ECC
1.0 Tlop SP
515 GFlop SP

16 streaming

multiprocessors (SM)

GTX 580: 16
GTX 480: 15
C2050: 14

SMs are independent
768 KB L2 cache

Host Interface

S a
[¢]
> 3
9
G =
b3 . _ _ Y

Fermi Streaming Multiprocessor (SM)

Instruction Cache

- 32 cores per SM (512 cores total) warp chedler wap Scheduir

Dispatch Unit Dispatch Unit

8- 8-

64KB Configurable Register File (32,768 x 32-bit)
L1 cache / shared memory 1 | =

LD/ST

32,768 32-bit registers rover

LD/ST

LD/ST

LD/ST
Host Interface

LD/ST

LD/ST

3 LD/ST

: LD/ST

) LD/ST
Core Core Core

LD/ST

LD/ST
Core Core Core

= LD/ST

L2 Cache \ interconnect Network

Memory Controller

64 KB Shared Memory /L1 Cache

Memory Controller

Uniform Cache
Tex Tex

Texture Cache
PolyMorph Engine

Memory Controller
511043U0D Aiowsw

[attribute Setup| [stream output |

|VeltexFetch|| Tessellator || qnowPort |

Kepler: SMX

- Consumer: —
L]
T T T Tl Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler
@ G X6 8 O , G X7 8 O , G X_ I ta n Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit

T s I I I s I

Register File (65,536 x 32-bit)

- HPC

Core SFU Core Core Core

- Tesla K10..K40, K80 — =

Core Core Core Core

- SMX features

Core Core Core Core

- 192 CUDA cores - -1 [
- 32 in Fermi — 1

- 32 Special Function Units (SFU

Core Core Core Core

- 4 for Fermi

- 32 Load/Store units (LD/ST) R

Core Core Core

° 16 for Fermi Core SFU Core Core Core

Core SFU Core Core Core

- 3x Perf/Watt improvement

Texture Cache

- 4x more texture memory —

Interconnect Network

Memory architecture (since Fermi)

- Configurable L1 cache per SM
- 16KB L1 cache / 48KB Shared memory
- 48KB L1 cache / 16KB Shared memory

Ty
L1 cache / L1 cache /
Shared L2 cache

Device memory

Host memory
PCl-e
bus

Maxwell: SMM

- Consumer:

PolyMorph Engine 2.0

Tessellator

Stream Output

Instruction Cache

Instruction Buffer
Warp Scheduler

Instruction Buffer
Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit
S

£

Register File (16,384 x 32-bit)

s
Register File (16,384 x 32-bit)

. GTX 970, GTX 980, ... I~ 56 |

Core Core Core Core Core

Core Core SFU Core Core Core

L}
® - Core Core SFU Core Core Core
Core Core SFU Core Core Core

- Tesla M40 e o || | N

Core SFU Core Core Core

. SM M Featu res: s oo || I I

- 4 subblocks of 32 cores
- Dedicated L1/LM per 64 cores

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
. .
- Dispatch/decode/registers per 32
Core Core Core SFU Core Core Core Core
CO re S Core Core Core SFU Core Core Core Core
Core Core Core SFU Core Core Core Core
] L2 Ca Ch e : 2 M B ~ 3X VS . Ke p I e r Core Core Core SFU Core Core Core Core

Core Core Core SFU Core Core Core Core

- 40 texture units - |
- Lower power consumption

Texture / L1 Cache

Pascal: SMP

- 64 single-precision (FP32) CUDA Cores.
- Maxwell = 128
- Kepler =192

- Focus on DP
- Energy efficiency ouctonSutlr p——

Warp Scheduler Warp Scheduler

Dispateh Urit Dispatch Unit D ch Unit

s pate
RS RS X 4

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)

SFU Core

Core Core Core

Core SFU Core Core Core

Core SFU Core Core Core

Core SFU Core Core

Core SFU Core Core

Core SFU Core Core

Core SFU Core Core

Core SFU Core Core

Texture / L1 Cache

Evolution in numbers

Kepler Maxwell Pascal Pascal

GPU / Form Factor GK110 / PCle |GM200 / PCle |[GP100 / SXM2 |GP100 / PCle

SMs 15 24 56 56
FP32 CUDA Cores / SM 192 128 64 64
FP32 CUDA Cores / GPU 2880 3072 3584 3584
FP64 CUDA Cores / SM 64 4 32 32
FP64 CUDA Cores / GPU 960 96 1792 1792
Base Clock 745 MHz 948 MHz 1328 MHz 1126 MHz

GPU Boost Clock 810/875 MHz | 1114 MHz 1480 MHz 1303 MHz

Single precision GFLOPS 5040 6844 10608 9340
Double precision GFLOPS 1680 213 5304 4670

Evolution in numbers

GPU / Form Factor

Kepler

Maxwell

Pascal

Pascal

GK110 / PCle

GM200 / PCle

GP100 / SXM2

GP100 / PCle

Texture Units

240

192

224

224

Memory Interface

384-bit GDDR5

384-bit GDDR5

3072-bit HBM2 (12GB)

4096-bit HBM2

4096-bit HBM2 (16GB)

549 GB/s (12GB)

Memory Bandwidth 288 GB/s 288 GB/s 732 GB/s 732 GB/s (16GB)
Memory Size Upto12GB ([Upto24GB |16 GB 12 GB or 16 GB
L2 Cache Size 1536 KB 3072 KB 4096 KB 4096 KB
Register File Size / SM 256 KB 256 KB 256 KB 256 KB

Register File Size / GPU (3840 KB 6144 KB 14336 KB 14336 KB

TDP 235 Watts 250 Watts 300 Watts 250 Watts
Transistors 7.1 billion 8 billion 15.3 billion 15.3 billion

GPU Die Size 551 mm? 601 mm? 610 mm? 610 mm?
IManufacturing Process [28-nm 28-nm 16-nm 16-nm

PROGRAMMING MANY-
CORES

Parallelism

- Threads
- Independent units of computation
- Expected to execute in parallel
- Write once, instantiate many times

- Concurrent execution
- Threads execute in the same time if there are sufficient resources

- Assume a processor P with 10 cores and an application A
with:
- 10 threads: how long does A take?
- 20 threads: how long does A take?
- 33 threads: how long does A take?

Parallelism

Synchronization = a thread’s execution must depend on
other threads
Barrier = all threads wait to get to barrier before they continue

Shared variables = more threads RD/WR them
Locks = threads can use locks to protect the WR sections

Atomic operation = operation completed by a single thread at a
time
Thread scheduling = the order in which the threads are
executed on the machine
User-based: programmer decides
OS-based: OS decides (e.g., Linux, Windows)
Hardware-based: hardware decides (e.g., GPUs)

Programming many-cores

= parallel programming:

- Choose/design algorithm

- Parallelize algorithm
- Expose enough layers of parallelism
« Minimize communication, synchronization, dependencies
- Overlap computation and communication

- Implement parallel algorithm
« Choose parallel programming model
+ (?) Choose many-core platform

- Tune/optimize application
- Understand performance bottlenecks & expectations
 Apply platform specific optimizations
- (?) Apply application & data specific optimizations

PROGRAMMING GPUS IN
CUDA

Kernel = the parallel program
Device code = manage the parallel program

o
CUDA

- CUDA: Scalable parallel programming

- C/C++ extensions
- Other wrappers exist

- Straightforward mapping onto hardware

- Hierarchy of threads (to map to cores)
- Configurable at logical level

- Various memory spaces (to map to physical spaces)
- Usable via variable scopes

- Scale to 1000s of cores & 100,000s of threads

- GPU threads are lightweight
- GPUs need 1000s of threads for full utilization

. A
CUDA Model of Parallelism

- CUDA virtualizes the physical hardware

- A block is a virtualized streaming multiprocessor
- threads, shared memory

- Athread is a virtualized scalar processor
- registers, PC, state
- Threads are scheduled onto physical hardware without
pre-emption
- threads/blocks launch & run to completion
- blocks must be independent

S
CUDA Model of Parallelism
Software GPU

8

Thread Threa
Thread Block Multi

T BEE

Thread Grid

(-
d Proces
—proces
Device

Hierarchy of threads

Execution Queue)

Control

Host
Memory

.

Level 2 Cache

$

Device Memory

©2010 The Portland Group, Inc.

Grids, Thread Blocks and Threads

Kernels and grids

- Launch kernel (12 x 6 = 72 instances)

myKernel<<<numBlocks,threadsPerBlock>>>(..);

- dim3 threadsPerBlock(3,4);
* threadsPerBlock.x = 3
* threadsPerBlock.y = 4
- Each thread:
(threadIdx.x, threadIdx.y

- dim3 numBlocks(2,3);
* blockDim.x = 2
* blockDim.y=3
- Each block :
(blockIdx.x,blockIdx.y)

Multiple Device Memory Scopes

- Per-thread private memory Thread
- Each thread has its own local memory
- Stacks, other private data, registers
- Accessible to a single thread only SM
- Per-SM shared memory
- Small memory close to the processor,

low latency
- Accessible to threads in the same block.

- Device memory
- GPU frame buffer
- Accessible to any thread e

Kernel 0

Memory

Memory spaces: Registers

Example:
__global_ _ void aKernel (float *C, float *A, float *B) {
int tx = threadldx.x; //local variable in registers

float local sum[4]; //small compile-time sized array
in registers

Registers:

- Thread-local scalars or small constant size arrays are stored as
registers

- Implicit in the programming model
- Behavior is very similar with local variables
- Not persistent: kernel ends, data is lost

Memory spaces: global memory

Example:
__global __ void matmul_kernel(float *C, //C points to global memory

float *A, //A points to global memory
float *B) //B points to global memory

Global memory
- Allocated by the host program using cudaMalloc()

- Initialized by the host program using cudaMemcpy()or previous
kernels

- Persistent = the values are retained between kernels

- Not coherent, writes by other threads might not be visible until
kernel has finished

Memory spaces: Constant

Example
constant__ float speed_of light=0.299792458; //scalars can be initialized

directly
__constant__ float2 vertices[NUM_VERTICES]; //initialized by a host function

__global__ void cn_pnpoly(uint8_t* bitmap, float2* points, intn) {

for (intj=0; j<NUM_VERTICES; k = j++) {
float2 vj= vertices|j]; //index j does not depend on threadldx

Constant memory:
Statically defined by the host program using constant qualifier
Defined as a global variable, visible only within the same translation unit
Initialized by the host program using cudaMemcpyToSymbol()
Read-only to the GPU, cannot be accessed directly by the host

Values are cached in a special cache optimized for broadcast access b
multiple threads simultaneously, access should not depend on threadldx

Memory spaces: Shared

Example:
__global __ void matmul_kernel(float *C, float *A, float *B) {
__shared__ float sh_A[tile_size][tile_size]; //2D array in shared memory
for (k = 0; k < WIDTH; k += tile_size) {

syncthreads(); //wait for all threads in the block

;A\[ty][tx] = Aly*"WIDTH + k + tx]; //fill shared memory with values
__syncthreads(); //wait again

Shared memory

Variables have to be declared using __shared__qualifier, size known at
compile time

In the scope of thread block, all threads in a thread block see the same piece
of memory

Not initialized, threads have to fill shared memory with meaningful values
Not persistent, after the kernel has finished, values in shared memory are lost

Not coherent, syncthreads()is required to make writes visible to other
threads within the thread block

Using CUDA

- Two parts of the code:

- Device code = GPU code = kernel(s)
- Sequential program
- Write for 1 thread, execute for all

- Host code = CPU code
- Instantiate grid + run the kernel

- Memory allocation, management, deallocation
- C/C++/Java/Python/...
- Host-device communication
- Explicit / implicit via PCl/e
- Minimum: data input/output

Pr()(;escmn flowy

All this happens from
the host code.

Instruct the processinl]

Execute parallel
in each core

Kernel
runs here
Processing flow

on CUDA

Image courtesy of Wikipedi:

Compiling CUDA

- nvcce is a compiler driver

- Separates source code into:
- device code (runs on GPU)
- further processed by NVIDIA compi

- host code (runs on CPU)
- further processed by host compiler

CUDA: kernels and launch

- Function qualifiers:

__global void my kernel() { }
device float my device func() { }

- Execution configuration:

dim3 gridDim (100, 50); // 5000 thread blocks

dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M
total)

my kernel <<< gridDim, blockDim >>> (...); // Launch
kernel

- Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadldx; // Thread index

void syncthreads(); // Thread synchronization

CUDA: Memory Allocation/Release

- All memory buffers — CPU and GPU must be allocated
- Host (CPU) manages device (GPU) memory:
- cudaMalloc (void **pointer, size t nbytes)

- cudaMemset (void *pointer, int val, size t
count)

- cudaFree (void* pointer)

CUDA: Data Copies

cudaMemcpy (void *dst, void *src,
size_t nbytes,
enum cudaMemcpyKind direction);

blocks CPU thread until all bytes have been copied
doesn’t start copying until previous CUDA calls complete

enum {
cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice
} cudaMemcpyKind

Non-blocking copies are also available
cudaMemcpyAsync
DMA transfers, overlap computation and communication

CUDA: dummy example

int n = 1024;

int nbytes = n * sizeof (int) ;

int* dataCPU = (int *)malloc (nbytes);
int* dataGPU;

cudaMalloc (&dataGPU, nbytes)
cudaMemset (dataGPU, 0, nbytes);

cudaMemcpy (dataGPU, dataCPU, nbytes,
cudaMemcpyHostToDevice) ;

myKernel<<<n/128,128>>>(n, dataGPU) ;

cudaMemcpy (dataCPU, dataGPU, nbytes,
cudaMemcpyDeviceToHost) ;

cudaFree (dataGPU) ;
free (dataCPU) ;

EXAMPLE: VECTOR-ADD

Programming many-cores

= parallel programming:

- Choose/design algorithm

- Parallelize algorithm
- Expose enough layers of parallelism
« Minimize communication, synchronization, dependencies
- Overlap computation and communication

- Implement parallel algorithm
« Choose parallel programming model
+ (?) Choose many-core platform

- Tune/optimize application
- Understand performance bottlenecks & expectations
 Apply platform specific optimizations
- (?) Apply application & data specific optimizations

. S
First CUDA program

- Determine mapping of operations and data to threads
- Write kernel(s)

- Sequential code
- Written per-thread
- Determine block geometry

- Threads per block, blocks per grid
- Number of grids (>= number of kernels)

- Write host code
- Memory initialization and copying to device
- Kernel(s) launch(es)
- Results copying to host

- Optimize the kernels

Vector add: sequential

void vector add(int size, float* a, float* b, float* c) {
for(int i=0; i<size; i++) {
c[i] = a[i] + b[i];

How do we parallelize this?

- What does each thread compute?
- One addition per thread
- Each thread deals with *different* elements

- How do we know which element?

- Compute a mapping of the grid to the data
* Any mapping will do!

Vector add: Kernel

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) ({
int 1 = ?
C[i] = A[i] + B[i];

Calculating the global thread index
Grid

Thread Block 0 Thread Block 1 Thread Block 2

“global” thread index:
blockDim.x * blockIdx.x + threadlIdx.x;

Calculating the global thread index
Grid

Thread Block 0 Thread Block 1 FT

“global” thread index:
blockDim.x * blockIdx.x + threadlIdx.x;

Vector add: Kernel

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) ({
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

Vector add: Launch kernel

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int 1 = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + BI[i]; GPU code
}
int main() { Host code
// initialization code here
N = 5120;

// launch N/256 blocks of 256 threads each
vector add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);
// cleanup code here

(in the same file)

Vector add: Launch kernel

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int 1 = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i]; GPU code

int main() { Host code

// initialization code here
N = 5000; // <- what happens?
// launch N/256 blocks of 256 threads each

vector add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);
// cleanup code here

(in the same file)

Vector add: Launch kernel

// compute vector sum ¢ = a + b

// each thread performs one pair-wise addition

__global void vector add(float* A, float* B, float* C) {
int 1 = threadIdx.x + blockDim.x * blockIdx.x;

if (i<N) C[i] = A[i] + BI[i]; GPU code

int main() { Host code

// initialization code here
N = 5000; // <- what happens?
// launch N/256 blocks of 256 threads each

vector add<<< N/256+1, 256 >>>(deviceA, deviceB, deviceC);
// cleanup code here

(in the same file)

.
Vector add: Host

int main(int argc, char** argv) {

float *hostA, *deviceA, *hostB, *deviceB, *hostC,
*deviceC;

int size = N * sizeof(float);

// allocate host memory
hostA = malloc(size) ;
hostB malloc (size) ;
hostC = malloc(size);

// initialize A, B arrays here...

// allocate device memory

cudaMalloc (&deviceA, size);
cudaMalloc (&deviceB, size);
cudaMalloc (&deviceC, size);

.
Vector add: Host

// transfer the data from the host to the device

cudaMemcpy (deviceA, hostA, size,
cudaMemcpyHostToDevice) ;

cudaMemcpy (deviceB, hostB, size,
cudaMemcpyHostToDevice) ;

// launch N/256 blocks of 256 threads each

vector add<<<N/256, 256>>>(deviceA, deviceB,
deviceC) ;

// transfer the result back from the GPU to the
host

cudaMemcpy (hostC, deviceC, size,
cudaMemcpyDeviceToHost) ;

}

ADVANCED CONCEPTS

. N
Thread Scheduling

- Order of threads within a block is undefined!

- Threads are grouped in warps (32 threads/warp)
- AMD calls it “a wavefront” (64 threads/wavefront)

- Order in which thread blocks are mapped and scheduled
Is undefined!
- Blocks run to completion on one SM without preemption

- Can run in any order
- Any possible interleaving of blocks should be valid

- Can run concurrently OR sequentially

Global synchronization

- We launch many more blocks than physical SM’s.
- Each block might/should have more threads than the SM’s cores

__global void my kernel() {
stepl; // compute some values in a global array
// wait for *all* threads to finish
__my global barrier();
step2; // use the array

int main() {
dim3 blockSize(32, 32);
dim3 gridSize(100, 100, 100);
my kernel<<<gridDim, blockDim>>>();

}

An example: parallel reduction

- Given an array with data, “reduce” it to a single value
- The sum of all elements
- The min/max of all elements

- Sequentially: O(n)
- In parallel?

- Tree-based algo.
+ O(log n)

- Requires a barrier
after each step

%
Parallel reduction in CUDA*

- One element per thread

- We need to use multiple blocks
- Large arrays
- Good GPU utilization
- We need global synchronization
- Synchronization inside blocks is possible.
- Synchronization between blocks is not possible!

- Solution: decompose into multiple kernels
- Kernel launch serves as a global synchronization point
- Kernel launch has negligible HW overhead, low SW overhead

*http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Parallel reduction in CUDA*

A L R R R R R R R R N R R R R R e

1 11
ISR 11 1 1 11 ISR 1
)3 ¢ 0 3 D 3 1 ¢ 06 3)3
5§ 1
's..‘_ 1 81 -
i M
184 1 1 1 Lill
) % 06 30 5 1 1 % 3 ‘5 ‘5 ‘5) % §
IARENES e IRee L1 1 3l L3l INeREeN
T T B 20 % D¢ 20 % B¢ X EESOXNEND, ADXNDANOENNY RENOEIXOEN' INOXNDXNDINL SOEXXOEXDX ERXNDXN Bl RO EXD RN RN

Level 1:
1 block

- Other optimizations

Use shared memory
Increase granularity

Avoid branching

Improve data access patterns

*http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Memory consistency

- Device (global) memory is not serially consistent
- No ordering guarantees in shared/global memory Rd/Wr

- Share data between streaming multiprocessors
- Potential write hazards!

- Use atomics to avoid data races for global (and shared)
memory variables!

- Evolution:
- Fermi has reasonable atomics for both shared and global memory
- Kepler increases global memory atomics performance vs. Fermi

- Maxwell uses native support for shared memory atomics
- Much faster than Fermi and Kepler

Atomics

- Guarantee that only a single thread has access to a piece
of memory during an operation

- Ordering is still arbitrary

- Different types of atomic instructions
- Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor

- Both for device memory and shared memory
- Much more expensive than load + operation + store

An example: image histogram

The histogram of an image: the distribution of the pixels in
the image.

In practice: count the pixels of each color

Useful image feature detection for image recognition.

100-0023
150100 05/24/04 18.43

An example: image histogram

// Determine frequency of colors in a picture.

// Colors have already been converted into integers
// between 0 and 255.

// Each thread looks at one pixel,

// and increments a counter

__global void histogram(int* colors, int* buckets)

{
int 1 = threadlIdx.x + blockDim.x * blocklIdx.x;
int ¢ = colors|[1i];
buckets[c] += 1; // incorrect!

An example: image histogram

// Determine frequency of colors in a picture.

// Colors have already been converted into integers
// between 0 and 255.

// Each thread looks at one pixel,

// and increments a counter atomically

__global void histogram(int* colors, int* buckets)

{
int 1 = threadlIdx.x + blockDim.x * blocklIdx.x;
int ¢ = colors|[1i];
atomicAdd (&buckets[c], 1);

CUDA: OCCUPANCY

. S
Thread Scheduling

- Order of threads within a block is undefined!

- Threads are grouped in warps (32 threads/warp)
- AMD calls it “a wavefront” (64 threads/wavefront)

- Order in which thread blocks are mapped and scheduled
Is undefined!
- Blocks run to completion on one SM without preemption

- Can run in any order
- Any possible interleaving of blocks should be valid

- Can run concurrently OR sequentially

Instruction Cache
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit
RS s

Warps = 32 threads e i e

Core Core Core
LD/ST

LD/ST

Core Core Core
LD/ST

- Threads are scheduled in warps =

Core Core Core
LD/ST

- AMD calls them “wavefronts” 2 2 1 T

LD/ST
LD/ST
LD/ST
LD/ST

- One warp => on one SM 1 1

LD/ST
Core Core Core

- Same SM till completion —

LD/ST

Core Core Core

Core Core Core
LD/ST

interconnect Network

e SChedUIing 64 KB Shared Memory /L1 Cache

Uniform Cache

- GigaThread Unit : schedules blocks per SM’s

Texture Cache
PolyMorph Engine

- Inside SM: warp scheduler(s) + [ermre || Tesaiseer)[BT

instruction dispatcher
- Replace warps that are stalled by warps waiting to compute
- Very fast context switching

[attribute Setup| | stream output |

Thread Scheduling

SMs implement zero-overhead warp scheduling
A warp is a group of 32 threads that runs concurrently on an SM

At any time, the number of warps concurrently executed by an SM
is limited by its number of cores.

Warps whose next instruction has its inputs ready for consumption
are eligible for execution

Eligible Warps are selected for execution on a prioritized
scheduling policy

All threads in a warp execute the same instruction when selected

| TB1, W1 stall |
F—TB2, W1 stal—] TB3, W2 stall }
I 1 TB2 | TB3 | TB3 | TB2 | TB1 | TB1 | TB1 | TB3
. v IR wi | wz RS w1 w2 | ws | w2
Instruction: 1:12:i3i4i65i6|1+i2]11i2|1i2)3i4|7i8|1i2]|1i2|[3:i4

—Time-» TB = Thread Block, W = Warp

Stalling warps

- What happens if all warps are stalled?
- No instruction issued — performance lost

- Most common reason for stalling?
- Waiting on global memory

- If your code reads global memory every couple of
Instructions
- You should try to maximize occupancy

Occupancy

Occupancy = Active Warps / Maximum Active Warps

- Remember: resources are allocated for the entire
block!

- Resources are finite

- Utilizing too many resources per thread may limit the
occupancy

- Potential occupancy limiters:
- Register usage
- Shared memory usage
- Block size

Resource Limits

Registers Shared Memory Registers Shared Memory

- Pool of registers and shared memory per SM
- Each thread block grabs registers & shared memory
- If one or the other is fully utilized => no more thread blocks

How do you know what you're using?

- Use compiler flags to get register and shared memory
usage
- ‘nvec -Xptxas -v”

- Use the NVIDIA Profiler
- Plug those numbers into CUDA Occupancy Calculator

- Maximize occupancy for improved performance
- Empirical rule! Don’t overuse!

@) @9~ s CUDA_Occupancy._calculatorxism - Microsoft Excel - = X
Home | Insert Page layout Formulas Data Review View @ - o x
; cut v o - [A) [=] |Swapted 7 rNorma Bad Good o= & :*""S"m AT A
Copy @] Fill ~
paste E T -|I['$ = % o Conditional Format Neutral m Check Cell ﬂ Insert Delete Format Sort & Find &
- J Format Painter [—nl [—l ;}u 22 LG e Formatting ~ as Table - - - (2 Clear ~ Filter~ Select~
Clipboard Fl Font Alignment] Number iEl Cells Editing
Ie Security Warning Macros have been disabled. | 2
MyRegCount - u 25
A LB | ¢ b [E [F [6 [H [1 [4 [k [t [m [N [o P [@ [R]

34 Allocation Per Thread Block

35 Warps 4
36 |Registers 3584

37 Shared Memory 1024
- 38 These data are used in computing the occupancy data in blue

39
40 Maximum Thread Blocks Per Multip! Blocks
41 Limited by Max Warps / Blocks per Multiprocessor 8
42 Limited by Registers per Multiprocessor

43 Limited by Shared Memory per Multiprocessor 16

44 Thread Block Limit Per Multiprocessor highlighted

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Multiprocessor
Warp Occupancy

Varying Block Size Varying Register Count
48
40
2 52
-3
83
24
£
£e
16 2
8
0
16 80 144 208 272 336 400 464 cee s B RERE RSN EE RN ERERScco=Snvm
OO ®
Threads Per Block Registers Per Thread

Multiprocessor
Warp Occupancy

Varying Shared Memory Usage

&

&

]

[N)
=

-
o

@

(=]

Thread divergence - penalty?

- Depends on the amount of divergence

- Worst case: 1/32 performance
- When each thread does something different

- Depends on whether branching is data- or ID- dependent

- If ID — consider grouping threads differently
- If data — consider sorting

- Non-diverging warps => NO performance penalty
- In this case, branches are not expensive ...

CUDA: THREAD
DIVERGENCE

Thread divergence
‘I heard GPU branching is expensive. Is this true?”

__global void Divergence(float* dst,float* src)

{
float value = 0.0f;

if (threadIdx.x % 2 == 0)
// active threads : 50%
value = src[0] + 5.0f;

else
// active threads : 50%
value = src[0] — 5.0f;
dst[index] = value;

Execution

Worst case performance loss:
50% compared with the non divergent case.

Another example

1 21/... ...l 8 (assume logic below is to be executed for each
Time (clocks) element in input array A, producing outputinto
ALUT ALU2 ALU8 the array ‘result)

<unconditional code>
float x = A[i];
if (x > 0) {

} else
float tmp = kMyConstl;

x = 2.f * tmp;

}

<resume unconditional code>

Not all ALUs do useful work!
Worst case: 1/8 peak performance

result[i] = x;

Performance penalty?

- Depends on the amount of divergence

- Worst case: 1/32 performance
- When each thread does something different

- Depends on whether branching is data- or ID- dependent

- If ID — consider grouping threads differently
- If data — consider sorting

- Non-diverging warps => NO performance penalty
- In this case, branches are not expensive ...

CUDA: MEMORY
COALESCING

Memory Coalescing

- Memory coalescing refers to combining multiple memory

accesses into a single transaction

[Coalesced access

GPU reads 4 elements

Z

oo

work-item 1 reads v[1] (already loaded)
—I work-item 2 reads v[2] (already loaded)
work-item 3 reads v[3] (already loaded)

[Non-coalesced access

work-item 0 reads v[0]
1

work-item 2 reads v[2]

T R,
Y/ N4
N W
¥ AN Ak

[’ '_r‘ A '\.

|:| -loaded by GPU

X - wasted load

work-iteI:n 1 reads v[1]

work-item 3 reads v[3]

. . R
C%‘a%m&‘&m\’é@ Coalescing

optimal memory access pattern

t=0 > address 0

f§7

address 1

t=0 ! address 2
PhN

~ 7 address 3
120 wfaddress 4
T~

7 address 5

t=0 Spfaddress 6

l‘§7

address 7

Caching

Caching vs. Coalescin

i-core

tional

optimal memory access pattern

t=0)

address 0

l‘§7

address 1

t=0)

address 2

l‘§7

address 3

t=0)

address 4

I‘=7

address 5

t=0)

address 6

I‘=7

address 7

Caching

VS.

many-core GPU
optimal memory access pattern

address 0

address 1

address 2

address 3

address 4

address 5

address 6

address 7

Coalescin

Consider the stride of your accesses

Input[7
Stride O T T2 W T TS e T
T o T T

“random”

__global void foo(int* input, float3* input2) {
int 1 = blockDim.x * blockIdx.x + threadlIdx.x;
// Stride 1, full bandwidth used!
int a = input[i];
// Stride 2, 50% of the bandwidth is wasted
int b = input[2*i+1];
// “Random” stride - ?? up to 7/8 bandwidth wasted
int ¢ = input[f(i)];

.
Example: Array of Structures (AoS)

Struct AoS({
int key;
int value;
int flag;

};

record *d AoS data;
cudaMalloc((void**) &d AoS data, ...);

kernel {
threadID = blockDim.x * blockIdx.x + threadIdx.x;

// ..
d AoS data[threadID].value += i; // wastes bandwidth!

// ..
}

. S
Example: Structure of Arrays (SoA)

Struct SoA {
int* keys;
int* values;
int* flags;

};

SoA d _SoA data;
cudaMalloc((void**) &d SoA data.keys, ...);
cudaMalloc((void**) &d SoA data.values, ...);
cudaMalloc((void**) &d SoA data.flags, ...);

kernel {
threadID = blockDim.x * blockIdx.x + threadIdx.x;

d SoA data.values[threadID] += i; // full
bandwidth!

.}

Memory Coalescing®

Group memory accesses in as few memory transactions
as possible.

128-byte or 32-byte long lines

Stride 1 access patterns are preferred!
Other patterns can still get benefits

Structure of arrays is often better than array of structures

Unpredictable/ irregular access patterns
Case-by-case performance impact

No coalescing => performance loss ~10x or more !
Caching might improve this impact ...

*http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#axzz3nJOkBsWe

CUDA: MEMORY
COALESCING

Memory Coalescing

- Memory coalescing refers to combining multiple

memcdr

[Coalesced access

GPU reads 4 elements

work-item 2 reads v[2] (already loaded)

_I work-item 1 reads v[1] (already loaded)
work-item 3 reads v[3] (already loaded)

(Non-coalesced access

work-item 0 reads v[0]
1

work-item 2 reads v[2]

T e T, Y 4) | s

Work-tem 1 reads v[1] work-item 3 reads v[3]

-loaded by GPU

X- wasted load

B
Caghing,

tional ti-core
optimal memory access pattern

vS. Coalesci~~

t=0 > address 0

f§7

address 1

t=0 ! address 2

I‘§7

address 3

120 wfaddress 4

I‘¢7

address 5

t=0 Spfaddress 6

l‘§7

address 7

Caching

Caching vs. Coalescin

i-core

tional

optimal memory access pattern

t=0)

address 0

l‘§7

address 1

t=0)

address 2

l‘§7

address 3

t=0)

address 4

I‘=7

address 5

t=0)

address 6

I‘=7

address 7

Caching

VS.

many-core GPU
optimal memory access pattern

address 0

address 1

address 2

address 3

address 4

address 5

address 6

address 7

Coalescin

Consider the stride of your accesses

Input[7
Stride O T T2 W T TS e T
T o T T

“random”

__global void foo(int* input, float3* input2) {
int 1 = blockDim.x * blockIdx.x + threadlIdx.x;
// Stride 1, full bandwidth used!
int a = input[i];
// Stride 2, 50% of the bandwidth is wasted
int b = input[2*i+1];
// “Random” stride - ?? up to 7/8 bandwidth wasted
int ¢ = input[f(i)];

I ——— ..
Example: Array of Structures (AoS)

int key;
int value;
int flag;

};

record *d AoS data;

cudaMalloc ((void**) &d AoS data, ...);

kernel {
threadID = blockDim.x * blockIdx.x + threadIdx.x;
// ..

d AoS data[threadID].value += i; // wastes bandwidth!

/] ..
}

SEXample. SHUCHUTE OT AMTaYS (SOAY

Struct SoA {
int* keys;
int* wvalues;
int* flags;

};

SoA d _SoA data;
cudaMalloc((void**) &d SoA data.keys, ...);
cudaMalloc((void**) &d SoA data.values, ...);

cudaMalloc ((void**) &d SoA data.flags, ...);

kernel {
threadID = blockDim.x * blockIdx.x + threadIdx.x;

d SoA data.values[threadID] += i; // full
bandwidth!

}

Memory Coalescing”®

- Group memory accesses in as few memory transactions
as possible.

- 128-byte or 32-byte long lines

- Stride 1 access patterns are preferred!
- Other patterns can still get benefits

- Structure of arrays is often better than array of structures

- Unpredictable/ irregular access patterns
- Case-by-case performance impact

- No coalescing => performance loss 10 — 30x !

*http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#axzz3nJOkB:

CUDA: USING SHARED
MEMORY

Using shared memory

- Equivalent with providing software caching
- Explicit: Load data to be re-used in shared memory
- Use it for computation
- Explicit: Store results back to global memory

- All threads in a block share memory
- Load/Store: using all threads

- Barrier. syncthreads
- Guard against using uninitialized data — not all threads have finished
loading data to shared memory
- Guard against corrupting live data — not all threads have finished
computing

A Common Proiramminﬁ Strateﬁy

- Partition data into subsets that fit into shared memory

137

A Common Proiramminﬁ Strateﬁy

- Handle each data subset with one thread block

A Common Programming Strategy

- Load the subset from device memory to shared memory,
using multiple threads to exploit memory-level parallelism

A Common Proiramminﬁ Strateﬁy

- Perform the computation on the subset from shared
memory

A Common Programming Strategy

- Copy the result from shared memory back to device
memory

Caches vs. Shared Memory

- Since Fermi, NVIDIA GPUs feature BOTH hardware L1
caches and shared memory per SM

- They share the same space
- % Cache + ¥4 Shared Memory OR
- Ya Cache + % Shared Memory

- L1 Cache
- Hardware caching enabled
- The HW decides what goes in or out and when
- Shared memory

- Software manages what goes in/out
- Allows more complex access patterns to be cached

Example: Matrix multiplication

-C=A*B
- C(i,j) = sum(dot(row(A,i),col(B,))))
- Parallelization strategy

- Each thread computes one C element
- 2D kernel

Matrix multiplication implementation

__global void mat mul (float *a, float *b,
float *c, int width)

// calc row & column index of output element
int row = blockIdx.y*blockDim.y + threadlIdx.y;
int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and column o
for(int k = 0; k < width; k++) {

result += a[row*width+k] * b[k*width+col];
}

c[row*width+col] = result;

Matrix multiplication performance

Loads per dot product 2 (aand b) = 8 bytes
term

FLOPS 2 (multiply and add)
Al 2/8=0.25
Performance GTX 580 1581 GFLOPs
Memory bandwidth GTX 192 GB/s

280

Attainable performance 192 * 0.25 =48
GFLOPS

Maximum efficiency 3.0 % of theoretical

peak

Data reuse

- Each input elementin Aand B is

read WIDTH times
. IDEA WIDTH

- Load elements into shared memory

- Have several threads use local ver
improve memory bandwid

Using shared memory

- Partition kernel loop into phases

- |n each thread block, load a tile of both
matrices into shared memory each
phase

- Each phase, each thread computes a
partial result

TILE WIDTH

‘_l_\

Matrix multiply with shared memory

__global void mat mul (float *a, float *b,

float *c, int width) {
// shorthand

int tx = threadIdx.x, ty
int bx = blocklIdx.x, by

threadIdx.y;
blockIdx.y;

// allocate tiles in shared memory
shared float s_a[TILE_WIDTH][TILE_WIDTH];

shared float s b[TILE WIDTH] [TILE WIDTH] ;

// calculate the row & column index from A,B
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;

float result = 0;

Matrix multiply with shared memory

// loop over input tiles in phases, p = crt. phase
for(int p = 0; p < width/TILE WIDTH; p++) {
// collaboratively load tiles into shared memory
s_a[ty] [tx] = a[row*width + (p*TILE WIDTH + tx)];
s b[ty] [tx] = D[(p*TILE WIDTH + ty)*width + col];
// barrier: ALL writes to shared memory finished
__syncthreads() ;

// dot product between row of s a and col of s b
for(int k = 0; k < TILE WIDTH; k++) {
result += s _a[ty] [k] * s_b[k][tx];
}
// barrier: ALL reads of shared memory finished
__syncthreads() ;

}

c[row*width+col] = result;

}

Use of Barriers in mat_mul

- Two barriers per phase:
- syncthreads after all data is loaded into shared memory

- __syncthreads after all data is read from shared memory
- Second __ syncthreads in phase p guards the load in phase p+1

- Formally, _ synchthreads is a barrier for shared memory
for a block of threads:

“void __ syncthreads();

waits until all threads in the thread block have reached this
point and all global and shared memory accesses made by
these threads prior to __syncthreads() are visible to all
threads in the block.”

Matrix multiplication performance

I N

Global loads
Total ops 2N3
Al 0.25

Performance GTX 580
Memory bandwidth GTX 580
Al needed for peak

TILE_WIDTH required to achieve
peak

2N3 * 4 bytes (2N3/TILE_WIDTH) * 4

bytes
2N3

0.25* TILE_WIDTH

1581 GFLOPs
192 GB/s
1581 /192 = 8.23

0.25* TILE_WIDTH = 8.23,
TILE_WIDTH =32.9

CUDA: STREAMS

Overlap Computation and Communication

- Main idea: while executing a kernel, bring data in for the
next kernel:

Copy data |
Execute I

Copy data — —
Execute I DN N

What are streams??

Stream = a sequence of operations that execute on the
device in the order in which they are issued by the host
code.

Same stream: In-Order execution
Different streams: Out-of-Order execution

Default stream = Synchronizing stream

No operation in the default stream can begin until all previously
iIssued operations in any stream on the device have completed.

An operation in the default stream must complete before any other
operation in any stream on the device can begin.

Default stream: example

cudaMemcpy(d _a, a, numBytes,cudaMemcpyHostToDevice);
increment<<<l,N>>>(d a);

CpuFunction(b);
cudaMemcpy(a, d a, numBytes,cudaMemcpyDeviceToHost) ;

- All operations happen in the same stream

- Device (GPU)

- Synchronous execution
+ all operations execute (in order), one after the previous has finished

- Unaware of CpuFunction()
- Host (CPU)
- Launches increment and regains control

- *May* execute CpuFunction *before* increment has finished

- Final copy starts *after* both increment and CpuFunction()
have finished

Non-default streams

- Enable asynchronous execution and overlaps
- Require special creation/deletion of streams
- cudaStreamCreate(&streaml)
* cudaStreamDestroy(streaml)
- Special memory operations

- cudaMemcpyAsync (deviceMem, hostMem, size,
cudaMemcpyHostToDevice, streaml)

- Special kernel parameter (the 4t one)
* increment<<<l, N, 0, streaml>>>(d a)

- Synchronization
- All streams
- cudaDeviceSynchronize()

- Specific stream:
- cudaStreamSyncrhonize(stream1)

Computation vs. communication

//Single stream, numBytes = 16M, numElements = 4M
cudaMemcpy(d a, a, numBytes, cudaMemcpyHostToDevice);

kernel<<blocks,threads>>(d a, firstElement);
cudaMemcpy(a, d a, numBytes, cudaMemcpyDeviceToHost);

C1060 (pre-Fermi): 12.9ms
P e

C2050 (Fermi): 9.9ms

Sequential Version

Computation-communication overlap[1]*

for (int i = 0; i < nStreams; ++i) {

int offset

stream[i]);

i * streamSize;
cudaMemcpyAsync(&d a[offset],

&a[offset], streamBytes,

kernel<<blocks,threads,0,stream[1]>>(d _a, offset);

cudaMemcpyAsync (&a[offset], &d a[offset], streamBytes,

stream[i]);

}

C1060 (pre-Fermi): 13.63 ms (worse than sequential)

Copy Engine H2D -2
Kernel Engine

D2H -2

H2D -3

D2H -3

H2D - 4

2

3

C2050 (Fermi): 5.73 ms (better than sequential)

H2D Engine 2 3
Kernel Engine
D2H Engine

https://github.com/parallel-forall/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async

4

2

3

4

D2H -

Computation-communication overlap|[2]*

for (int i = 0; i < nStreams; ++i) offset[i]=1 * streamSize;
for (int i = 0; i < nStreams; ++i)
cudaMemcpyAsync (&d _a[offset[1]], &a[offset[i]], streamBytes,
cudaMemcpyHostToDevice, stream[i1]);

for (int i = 0; i < nStreams; ++1i)
kernel<<blocks,threads,0,stream[1]>>(d _a, offset);

for (int 1 = 0; 1 < nStreams; ++1i)
cudaMemcpyAsync (&a[offset], &d al[offset], streamBytes,
cudaMemcpyDeviceToHost, stream[i]);

C1060 (pre-Fermi): 8.84 ms (better than sequential)

Copy Engine |H2D-| |H2D-2|H2D-3|H2D-4|D2H-| | D2H-2 | D2H -3 | D2H - 4
Kernel Engine | 2 3 4

C2050 (Fermi): 7.59 ms (better than sequential, worse than v1)

H2D Engine | 2 3 4
Kernel Engine | 2 3 4
D2H Engine I 2 3 4

CUDA: MANY OTHER
FEATURES

Kepler: Dynamic parallelism

DYNAMIC PARALLELISM

GPU

CPU

GPU

CPU

T1TITTIT1I101TIT
(T 111111811

-
-
-
-
-
-
&
&
e
-
-

EEEEEEEEESE

l il l1l]

KEPLER
32 SIMULTANEOUS MP1 TASKS

1

e

. -uu'Jn'

B e

ewane

NVIDIA HYPER-Q

.ee
“ ..
s.ae

PR EEEEEEEEES
| o

PR EEEEEEREEES
PR EEEREEEEEEEEES
PR REEES

R 11321123011)
1 131181118 113131
EEEEEEEEEEEn
EEREEEEEEEEES

P lAil24130111

coppecoeoo

Hyper-

FERMI
TASKAT A TIME

Kepler
-

\
—

‘ass Interface IMPI)

Kepler GK110: GPU Direct

System
Memory

Memory Memo
8

GPU GPU | GPU
1 2 \\ |1

PCl-e PCl-e

Network

Network ‘ 4 Network
Card N~ ' Card

Server 1 Server 2

Unified memory

Unified Memory

Dramatically Lower Developer Effort

Developer View Yoday Developer View With
Unifled Momoey

SUMMARY

Take home message

- GPUs are massively parallel architectures with limited
flexibility, but very high throughput
- Pro’s:
- Much higher compute capabilities
- Higher bandwidth

- Con’s
- Limited on-card memory
- Low-bandwidth communication with host

- Debate-able
- Programmability & productivity

Open research questions

- Shall we port all applications on GPUs?
- If yes — can we automate the process?
- If not — can we decide how to select?

- Shall we use GPUs in large-scale systems?
- Shall we use heterogeneous CPU+GPU systems?

- Can we improve the GPU design ...

- For HPC?
- For other application domains?

Questions? Comments”? Suggestions?

- A.L.Varbanescu@uva.nl

... also if you want to work on GPU-related projects OR in a
team that works on heterogeneous computing.

... All you have to do is ask ©

