
GPU COMPUTING
Part 1

Ana Lucia Varbanescu (UvA)

HPC computing

2

• Big Data, Big Simulation, Big Science
• Challenges

•  Compute and storage
•  Efficiency

•  Performance vs. Energy

• HPC focuses traditionally on performance, but now
moving towards efficiency
•  Traditional HPC: complex machines, on-demand
•  Modern HPC: more and more based on existing machines, put

together in dense clusters/datacenters

• HPC is expanding to new application domains.

SAR imaging

3

Sound ray tracing

4

• A collaboration with Dutch NLR
• Simulate the sound propagation

•  from an aircraft to receivers

• Assess aircraft flyover noise during the aircraft take-off
and approach procedures

Sound ray tracing

5

1 2

BRIEFLY ON HARDWARE

6

Moore’s Law
•  Gordon Moore (co-founder of Intel) predicted in 1965 that the

transistor density of semiconductor chips would double roughly
every 18 months.

7

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year ... Certainly over the short term this rate can
be expected to continue, if not to increase....” Electronics Magazine 1965

Evolution of processors

Chip density can
increase about 2x every
2 years

BUT

•  Clock speed is not
•  Power is not
•  Instruction Level

Parallelism is not

8

What does this mean in practice?

New ways to use transistors
Improve PERFORMANCE by using parallelism on-chip:
multi-core (CPUs) and many-core processors (GPUs).

9

Parallelism ó HPC
• Parallelism is mandatory for high performance

•  Yesterday: clusters (and grids)
•  Today: multi-/many-core processors
•  Tomorrow: massive multi-scale heterogeneous parallelism =

clusters using different types of multi-/many-cores

>95% of computing systems today are parallel!

Main challenges: learn to program
parallel machines and learn to use them

efficiently!

Why talk about GPUs?
• GPUs are a steady market

•  Gaming
•  CAD-like activities

•  Traditional or not …
•  Visualisation

•  Scientific or not …

• GPUs are increasingly used for other types of applications
•  Number crunching in science, finance, image processing
•  (fast) Memory operations in big data processing

11

Massive parallelism => massive performance

GPGPU ?!

12

Graphics in 1980

13

Graphics in 2015

14

GPUs in movies

15

•  From Ariel in Little Mermaid to Brave

Why GPUs?

16

• Promise of performance beyond most other architectures
•  CPUs
•  Multi-core CPUs
•  FPGAs
•  …

•  They are power efficient
•  2-5x better than a CPU

• What took us so long?
•  These things are not easy to program …

GPUs vs. supercomputers

17

TODO List

18

1.  Introduction
2.  GPGPUs & hardware performance
3.  CUDA & application performance
4.  Advanced CUDA

INTRODUCTION TO GPUS
GPU = the processor
GPGPU = general purpose computing on GPUs

 (typically refers to non-graphics stuff)

GPUs @ NVIDIA

20

GPUs @ ATI/AMD

21

GPUs @ ATI/AMD

22

NVIDIA vs AMD

23

NVIDIA vs AMD

24

NVIDIA vs. AMD

25

GPUs @ ARM

26

ON PERFORMANCE

Performance [1]
•  Latency/delay

•  The time for one operation (instruction) to finish, L
•  To improve: minimize L

•  Lower is better

•  Throughput
•  The number of operations (instructions) per time unit, T
•  To improve: maximize T

•  Higher is better
•  Thus, time per instruction decreases, on average

• Example: 1 man builds a house in 10 days.
•  Latency improvement: …
•  Throughput improvement: …

Performance [2]
• How do we get faster computers?

•  Faster processors and memory
•  Increase clock frequency à latency boost

•  Better memory techniques
•  Use memory hierarchies à latency boost
•  More memory closer to processor à latency boost

•  Better processing techniques
•  Use pipelining à throughput boost

•  More processing units (cores, threads, …)
•  Use parallelism/concurrency à throughput boost (only?)

•  Accelerators
•  Use specialized functional units à latency+throughput boost

Hardware Performance metrics
•  Clock frequency [GHz] = absolute hardware speed

•  Memories, CPUs, interconnects

•  Operational speed [GFLOPs]
•  Operations per second
•  single AND double precision

•  Memory bandwidth [GB/s]
•  Memory operations per second

•  Can differ for read and write operations !
•  Differs a lot between different memories on chip

•  Power [Watt]
•  The rate of consumption of energy

•  Derived metrics
•  FLOP/Byte, FLOP/Watt

30

Theoretical peak performance
Peak = chips * cores * vectorWidth * FLOPs/cycle *
clockFrequency

• Examples
•  Intel Core i7 CPU

2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs
•  NVIDIA GTX 580 GPU

1 chip * 16 SMs * 32 cores * 2 FLOPs/cycle * 1.544 GhZ = 1581 GFLOPs
•  AMD HD 6970

1 chip * 24 SIMD engines * 16 cores * 4-way vectors * 2 FLOPs/cycle * 0.880
GhZ = 2703 GFLOPs

31

T12

NV30 NV40
G70

G80

GT200

3GHz Dual
Core P4

3GHz
Core2 Duo

3GHz Xeon
Quad

GPU vs. CPU performance

32

Single vs. double precision?

Main Memory bandwidth
Throughput = memory bus frequency * bits per cycle * bus
width

•  Memory clock != CPU clock
•  In bits, divide by 8 for GB/s

• Examples:
•  Intel Core i7 DDR3: 1.333 * 2 * 64 = 21 GB/s
•  NVIDIA GTX 580 GDDR5: 1.002 * 4 * 384 = 192 GB/s
•  ATI HD 6970 GDDR5: 1.375 * 4 * 256 = 176 GB/s

33

Memory bandwidths
• On-chip memory can be orders of magnitude faster

•  Registers, shared memory, caches, …
•  E.g., AMD HD 7970 L1 cache achieves 2 TB/s (vs. 176GB/s for

main memory)

• Other memories: depends on the interconnect
•  Intel’s technology: QPI (Quick Path Interconnect)

•  25.6 GB/s
•  AMD’s technology: HT3 (Hyper Transport 3)

•  19.2 GB/s
•  Accelerators: PCI-e 2.0

•  8 GB/s

34

GPU vs. CPU performance

35

Power
• Chip manufactures specify Thermal Design Power (TDP)
• We can measure dissipated power

•  Whole system
•  Typically (much) lower than TDP

• Power efficiency
•  FLOPS / Watt

• Examples (with theoretical peak and TDP)
•  Intel Core i7: 154 / 160 = 1.0 GFLOPs/W
•  NVIDIA GTX 580: 1581 / 244 = 6.3 GFLOPs/W
•  ATI HD 6970: 2703 / 250 = 10.8 GFLOPs/W

36

Absolute hardware performance
• Only achieved in the optimal conditions:

•  Processing units 100% used
•  All parallelism 100% exploited
•  All data transfers at maximum bandwidth

•  In real life
•  No application is like this
•  Can we reason about “real” performance?

37

HIGH-LEVEL
OPERATIONAL VIEW

38

A GPU Architecture

39

Integration into host system
•  Typically PCI Express 2.0
•  Theoretical speed 8 GB/s

•  Effective ≤ 6 GB/s
•  In reality: 4 – 6 GB/s

• V3.0 recently available
•  Double bandwidth
•  Less protocol overhead

40

A CPU die

41

A GPU die: Fermi

42

CPU vs. GPU 43

Control
ALU ALU

ALU ALU

Cache

CPU
Few complex cores
Lots of on-chip memory
Lots of control logic

GPU
many

simple cores,
little memory,

little control

Why so different?
• Different goals produce different designs!

•  CPU must be good at everything
•  GPUs focus on massive parallelism

•  Less flexible, more specialized

• CPU: minimize latency experienced by 1 thread
•  big on-chip caches
•  sophisticated control logic

• GPU: maximize throughput of all threads
•  # threads in flight limited by resources => lots of resources

(registers, etc.)
•  multithreading can hide latency => no big caches
•  share control logic across many threads

44

CPU vs. GPU
• Movie
•  The Mythbusters

•  Jamie Hyneman & Adam Savage
•  Discovery Channel

• Appearance at NVIDIA’s NVISION 2008

45

NVIDIA GPUS
ARCHITECTURE

46

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

Fermi
• Consumer: GTX 480, 580
• HPC: Tesla C2050

•  More memory, ECC
•  1.0 Tlop SP
•  515 GFlop SP

•  16 streaming
multiprocessors (SM)
•  GTX 580: 16
•  GTX 480: 15
•  C2050: 14

• SMs are independent
•  768 KB L2 cache

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
tr

o
lle

r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
tr

o
lle

r
M

e
m

o
r
y
 C

o
n
tr

o
lle

r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

M
e
m

o
r
y
 C

o
n
tr

o
ll
e
r

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC
SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

Fermi Streaming Multiprocessor (SM)

•  32 cores per SM (512 cores total)
•  64KB configurable

L1 cache / shared memory
•  32,768 32-bit registers

48

Kepler: SMX
• Consumer:

•  GTX680, GTX780, GTX-Titan
• HPC

•  Tesla K10..K40, K80
• SMX features

•  192 CUDA cores
•  32 in Fermi

•  32 Special Function Units (SFU)
•  4 for Fermi

•  32 Load/Store units (LD/ST)
•  16 for Fermi

• 3x Perf/Watt improvement
• 4x more texture memory

49

Memory architecture (since Fermi)
• Configurable L1 cache per SM

•  16KB L1 cache / 48KB Shared memory
•  48KB L1 cache / 16KB Shared memory

• Shared L2 cache

50

Device memory

L2 cache

Host memory
PCI-e
bus

registers

L1 cache /
shared mem

registers

L1 cache /
shared mem ….

Maxwell: SMM
• Consumer:

•  GTX 970, GTX 980, …
• HPC:

•  Tesla M40

• SMM Features:
•  4 subblocks of 32 cores
•  Dedicated L1/LM per 64 cores
•  Dispatch/decode/registers per 32

cores
• L2 cache: 2MB (~3x vs. Kepler)
• 40 texture units
• Lower power consumption

51

Pascal: SMP
•  64 single-precision (FP32) CUDA Cores.

•  Maxwell = 128
•  Kepler = 192

•  Focus on DP
• Energy efficiency

52

Evolution in numbers

GPU / Form Factor
Kepler Maxwell Pascal Pascal
GK110 / PCIe GM200 / PCIe GP100 / SXM2 GP100 / PCIe

SMs 15 24 56 56

FP32 CUDA Cores / SM 192 128 64 64

FP32 CUDA Cores / GPU 2880 3072 3584 3584

FP64 CUDA Cores / SM 64 4 32 32

FP64 CUDA Cores / GPU 960 96 1792 1792

Base Clock 745 MHz 948 MHz 1328 MHz 1126 MHz

GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 1303 MHz

Single precision GFLOPS 5040 6844 10608 9340

Double precision GFLOPS 1680 213 5304 4670

53

Evolution in numbers

GPU / Form Factor
Kepler Maxwell Pascal Pascal
GK110 / PCIe GM200 / PCIe GP100 / SXM2 GP100 / PCIe

Texture Units 240 192 224 224

Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2
3072-bit HBM2 (12GB)
4096-bit HBM2 (16GB)

Memory Bandwidth 288 GB/s 288 GB/s 732 GB/s
549 GB/s (12GB)
732 GB/s (16GB)

Memory Size Up to 12 GB Up to 24 GB 16 GB 12 GB or 16 GB

L2 Cache Size 1536 KB 3072 KB 4096 KB 4096 KB

Register File Size / SM 256 KB 256 KB 256 KB 256 KB

Register File Size / GPU 3840 KB 6144 KB 14336 KB 14336 KB

TDP 235 Watts 250 Watts 300 Watts 250 Watts

Transistors 7.1 billion 8 billion 15.3 billion 15.3 billion

GPU Die Size 551 mm² 601 mm² 610 mm² 610 mm²

Manufacturing Process 28-nm 28-nm 16-nm 16-nm

54

PROGRAMMING MANY-
CORES

55

Parallelism

56

•  Threads
•  Independent units of computation
•  Expected to execute in parallel
•  Write once, instantiate many times

• Concurrent execution
•  Threads execute in the same time if there are sufficient resources

• Assume a processor P with 10 cores and an application A
with:
•  10 threads: how long does A take?
•  20 threads: how long does A take?
•  33 threads: how long does A take?

Parallelism

57

• Synchronization = a thread’s execution must depend on
other threads
•  Barrier = all threads wait to get to barrier before they continue
•  Shared variables = more threads RD/WR them

•  Locks = threads can use locks to protect the WR sections
•  Atomic operation = operation completed by a single thread at a

time

•  Thread scheduling = the order in which the threads are
executed on the machine
•  User-based: programmer decides
•  OS-based: OS decides (e.g., Linux, Windows)
•  Hardware-based: hardware decides (e.g., GPUs)

Programming many-cores
= parallel programming:

•  Choose/design algorithm
•  Parallelize algorithm

•  Expose enough layers of parallelism
•  Minimize communication, synchronization, dependencies
•  Overlap computation and communication

•  Implement parallel algorithm
•  Choose parallel programming model
•  (?) Choose many-core platform

•  Tune/optimize application
•  Understand performance bottlenecks & expectations
•  Apply platform specific optimizations
•  (?) Apply application & data specific optimizations

PROGRAMMING GPUS IN
CUDA
Kernel = the parallel program
Device code = manage the parallel program

59

CUDA

60

• CUDA: Scalable parallel programming
•  C/C++ extensions

•  Other wrappers exist

• Straightforward mapping onto hardware
•  Hierarchy of threads (to map to cores)

•  Configurable at logical level
•  Various memory spaces (to map to physical spaces)

•  Usable via variable scopes

• Scale to 1000s of cores & 100,000s of threads
•  GPU threads are lightweight
•  GPUs need 1000s of threads for full utilization

CUDA Model of Parallelism
• CUDA virtualizes the physical hardware

•  A block is a virtualized streaming multiprocessor
•  threads, shared memory

•  A thread is a virtualized scalar processor
•  registers, PC, state

•  Threads are scheduled onto physical hardware without
pre-emption
•  threads/blocks launch & run to completion
•  blocks must be independent

61

CUDA Model of Parallelism

62

Hierarchy of threads

63

Thread

Block

Grid

Grids, Thread Blocks and Threads
Grid

Thread Block 0, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Grid
Thread Block 0, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 0, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 0

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 1

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Thread Block 1, 2

0,0 0,1 0,2 0,3
1,0 1,1 1,2 2,3
2,0 2,1 2,2 2,3

Kernels and grids

65

•  Launch kernel (12 x 6 = 72 instances)
myKernel<<<numBlocks,threadsPerBlock>>>(…);

•  dim3 threadsPerBlock(3,4);
•  threadsPerBlock.x = 3
•  threadsPerBlock.y = 4
•  Each thread:
(threadIdx.x, threadIdx.y)

•  dim3 numBlocks(2,3);
•  blockDim.x = 2
•  blockDim.y=3
•  Each block :
(blockIdx.x,blockIdx.y)

Thread

Per-thread
Local Memory

SM

Per-SM
Shared
Memory

Kernel 0

Multiple Device Memory Scopes
• Per-thread private memory

•  Each thread has its own local memory
•  Stacks, other private data, registers
•  Accessible to a single thread only

• Per-SM shared memory
•  Small memory close to the processor,
low latency
•  Accessible to threads in the same block.

• Device memory
•  GPU frame buffer
•  Accessible to any thread

66

Kernel 1
Per-device

Global
Memory

…

…

Memory spaces: Registers
Example:
__global__ void aKernel(float *C, float *A, float *B) {
 int tx = threadIdx.x; //local variable in registers
 float local_sum[4]; //small compile-time sized array
in registers

Registers:
•  Thread-local scalars or small constant size arrays are stored as

registers
•  Implicit in the programming model
•  Behavior is very similar with local variables
•  Not persistent: kernel ends, data is lost

67

Memory spaces: global memory
Example:
__global__ void matmul_kernel(float *C, //C points to global memory

 float *A, //A points to global memory
 float *B) //B points to global memory

Global memory
•  Allocated by the host program using cudaMalloc()
•  Initialized by the host program using cudaMemcpy()or previous

kernels
•  Persistent = the values are retained between kernels
•  Not coherent, writes by other threads might not be visible until

kernel has finished

68

Memory spaces: Constant
Example
__constant__ float speed_of_light= 0.299792458; //scalars can be initialized
directly
__constant__ float2 vertices[NUM_VERTICES]; //initialized by a host function
__global__ void cn_pnpoly(uint8_t* bitmap, float2* points, intn) {
...
for (intj=0; j<NUM_VERTICES; k = j++) {
float2 vj= vertices[j]; //index j does not depend on threadIdx

Constant memory:
•  Statically defined by the host program using __constant__qualifier
•  Defined as a global variable, visible only within the same translation unit
•  Initialized by the host program using cudaMemcpyToSymbol()
•  Read-only to the GPU, cannot be accessed directly by the host
•  Values are cached in a special cache optimized for broadcast access by

multiple threads simultaneously, access should not depend on threadIdx

69

Memory spaces: Shared
Example:
__global__ void matmul_kernel(float *C, float *A, float *B) {
__shared__ float sh_A[tile_size][tile_size]; //2D array in shared memory
for (k = 0; k < WIDTH; k += tile_size) {
__syncthreads(); //wait for all threads in the block
sA[ty][tx] = A[y*WIDTH + k + tx]; //fill shared memory with values
__syncthreads(); //wait again

Shared memory
•  Variables have to be declared using __shared__qualifier, size known at

compile time
•  In the scope of thread block, all threads in a thread block see the same piece

of memory
•  Not initialized, threads have to fill shared memory with meaningful values
•  Not persistent, after the kernel has finished, values in shared memory are lost
•  Not coherent, __syncthreads()is required to make writes visible to other

threads within the thread block

70

Using CUDA

71

•  Two parts of the code:
•  Device code = GPU code = kernel(s)

•  Sequential program
•  Write for 1 thread, execute for all

•  Host code = CPU code
•  Instantiate grid + run the kernel
•  Memory allocation, management, deallocation
•  C/C++/Java/Python/…

• Host-device communication
•  Explicit / implicit via PCI/e
•  Minimum: data input/output

Processing flow

72

Image courtesy of Wikipedia

Kernel
runs here

All this happens from
the host code.

Compiling CUDA
•  nvcc is a compiler driver
• Separates source code into:

•  device code (runs on GPU)
•  further processed by NVIDIA compiler

•  host code (runs on CPU)
•  further processed by host compiler (g++, cl.exe)

73

CUDA: kernels and launch
•  Function qualifiers:
__global__ void my_kernel() { }
__device__ float my_device_func() { }

• Execution configuration:
dim3 gridDim(100, 50); // 5000 thread blocks
dim3 blockDim(4, 8, 8); // 256 threads per block (1.3M
total)

my_kernel <<< gridDim, blockDim >>> (...); // Launch
kernel

• Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index

void syncthreads(); // Thread synchronization

74

CUDA: Memory Allocation/Release
• All memory buffers – CPU and GPU must be allocated
• Host (CPU) manages device (GPU) memory:

•  cudaMalloc(void **pointer, size_t nbytes)
•  cudaMemset(void *pointer, int val, size_t
count)

•  cudaFree(void* pointer)

75

CUDA: Data Copies
cudaMemcpy(void *dst, void *src,

 size_t nbytes,
 enum cudaMemcpyKind direction);

•  blocks CPU thread until all bytes have been copied
•  doesn’t start copying until previous CUDA calls complete

•  enum {
cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice
} cudaMemcpyKind

•  Non-blocking copies are also available
•  cudaMemcpyAsync
•  DMA transfers, overlap computation and communication

76

CUDA: dummy example
int n = 1024;
int nbytes = n * sizeof(int);
int* dataCPU = (int *)malloc(nbytes);
int* dataGPU;

cudaMalloc(&dataGPU, nbytes);
cudaMemset(dataGPU, 0, nbytes);

cudaMemcpy(dataGPU, dataCPU, nbytes,

 cudaMemcpyHostToDevice);
myKernel<<<n/128,128>>>(n, dataGPU);
cudaMemcpy(dataCPU, dataGPU, nbytes,

 cudaMemcpyDeviceToHost);
cudaFree(dataGPU);
free(dataCPU);

77

EXAMPLE: VECTOR-ADD

78

Programming many-cores
= parallel programming:

•  Choose/design algorithm
•  Parallelize algorithm

•  Expose enough layers of parallelism
•  Minimize communication, synchronization, dependencies
•  Overlap computation and communication

•  Implement parallel algorithm
•  Choose parallel programming model
•  (?) Choose many-core platform

•  Tune/optimize application
•  Understand performance bottlenecks & expectations
•  Apply platform specific optimizations
•  (?) Apply application & data specific optimizations

79

First CUDA program
• Determine mapping of operations and data to threads
• Write kernel(s)

•  Sequential code
•  Written per-thread

• Determine block geometry
•  Threads per block, blocks per grid
•  Number of grids (>= number of kernels)

• Write host code
•  Memory initialization and copying to device
•  Kernel(s) launch(es)
•  Results copying to host

• Optimize the kernels

80

Vector add: sequential

void vector_add(int size, float* a, float* b, float* c) {
 for(int i=0; i<size; i++) {
 c[i] = a[i] + b[i];
 }
}

81

How do we parallelize this?
• What does each thread compute?

•  One addition per thread
•  Each thread deals with *different* elements
•  How do we know which element?

•  Compute a mapping of the grid to the data
•  Any mapping will do!

82

Vector add: Kernel

// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C) {
 int i = ?
 C[i] = A[i] + B[i];
}

Calculating the global thread index

“global” thread index:
 blockDim.x * blockIdx.x + threadIdx.x;

84

Grid
Thread Block 0

0 1 2 3 Thread Block 1

0 1 2 3 Thread Block 2

0 1 2 3

blockDim.X

85

Grid
Thread Block 0

0 1 2 3 Thread Block 1

0 1 2 3 Thread Block 2

0 1 2 3

blockDim.X

Calculating the global thread index

“global” thread index:
 blockDim.x * blockIdx.x + threadIdx.x;

 4 * 2 + 1 = 9

85

Vector add: Kernel

// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C) {
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

Done with the
kernel!

Vector add: Launch kernel
// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C) {
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main() {
 // initialization code here ...
 N = 5120;
 // launch N/256 blocks of 256 threads each
 vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);
 // cleanup code here ...
}

87

GPU code

Host code

(in the same file)

Vector add: Launch kernel
// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C) {
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main() {
 // initialization code here ...

 N = 5000; // <- what happens?
 // launch N/256 blocks of 256 threads each
 vector_add<<< N/256, 256 >>>(deviceA, deviceB, deviceC);
 // cleanup code here ...
}

88

GPU code

Host code

(in the same file)

Vector add: Launch kernel
// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C) {
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if (i<N) C[i] = A[i] + B[i];
}

int main() {
 // initialization code here ...

 N = 5000; // <- what happens?
 // launch N/256 blocks of 256 threads each
 vector_add<<< N/256+1, 256 >>>(deviceA, deviceB, deviceC);
 // cleanup code here ...
}

89

GPU code

Host code

(in the same file)

Vector add: Host
int main(int argc, char** argv) {
 float *hostA, *deviceA, *hostB, *deviceB, *hostC,
*deviceC;
 int size = N * sizeof(float);

 // allocate host memory
 hostA = malloc(size);
 hostB = malloc(size);
 hostC = malloc(size);

 // initialize A, B arrays here...

 // allocate device memory
 cudaMalloc(&deviceA, size);
 cudaMalloc(&deviceB, size);
 cudaMalloc(&deviceC, size);

90

Vector add: Host
 // transfer the data from the host to the device
 cudaMemcpy(deviceA, hostA, size,
cudaMemcpyHostToDevice);
 cudaMemcpy(deviceB, hostB, size,
cudaMemcpyHostToDevice);

 // launch N/256 blocks of 256 threads each
 vector_add<<<N/256, 256>>>(deviceA, deviceB,
deviceC);

 // transfer the result back from the GPU to the
host
 cudaMemcpy(hostC, deviceC, size,
cudaMemcpyDeviceToHost);
}

91

Done with the host
code!

ADVANCED CONCEPTS

92

Thread Scheduling
• Order of threads within a block is undefined!

•  Threads are grouped in warps (32 threads/warp)
•  AMD calls it “a wavefront” (64 threads/wavefront)

• Order in which thread blocks are mapped and scheduled
is undefined!
•  Blocks run to completion on one SM without preemption
•  Can run in any order

•  Any possible interleaving of blocks should be valid
•  Can run concurrently OR sequentially

93

Global synchronization
•  We launch many more blocks than physical SM’s.
•  Each block might/should have more threads than the SM’s cores

__global__ void my_kernel() {
 step1; // compute some values in a global array
 // wait for *all* threads to finish
 __my_global_barrier();
 step2; // use the array
}

int main() {
 dim3 blockSize(32, 32);
 dim3 gridSize(100, 100, 100);
 my_kernel<<<gridDim, blockDim>>>();
}

94

An example: parallel reduction
• Given an array with data, “reduce” it to a single value

•  The sum of all elements
•  The min/max of all elements

• Sequentially: O(n)
•  In parallel?

•  Tree-based algo.
•  O(log n)

•  Requires a barrier
 after each step

95

Parallel reduction in CUDA*
• One element per thread
• We need to use multiple blocks

•  Large arrays
•  Good GPU utilization

• We need global synchronization
•  Synchronization inside blocks is possible.
•  Synchronization between blocks is not possible!

• Solution: decompose into multiple kernels
•  Kernel launch serves as a global synchronization point
•  Kernel launch has negligible HW overhead, low SW overhead

96

*http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Parallel reduction in CUDA*
• What you get is …

• Other optimizations
•  Use shared memory
•  Increase granularity
•  Avoid branching
•  Improve data access patterns

97

*http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Memory consistency
• Device (global) memory is not serially consistent

•  No ordering guarantees in shared/global memory Rd/Wr

• Share data between streaming multiprocessors
•  Potential write hazards!

• Use atomics to avoid data races for global (and shared)
memory variables!

• Evolution:
•  Fermi has reasonable atomics for both shared and global memory
•  Kepler increases global memory atomics performance vs. Fermi
•  Maxwell uses native support for shared memory atomics

•  Much faster than Fermi and Kepler

98

Atomics
• Guarantee that only a single thread has access to a piece

of memory during an operation
•  Ordering is still arbitrary

• Different types of atomic instructions
•  Add, Sub, Exch, Min, Max, Inc, Dec, CAS, And, Or, Xor

• Both for device memory and shared memory
• Much more expensive than load + operation + store

99

An example: image histogram
•  The histogram of an image: the distribution of the pixels in

the image.
•  In practice: count the pixels of each color
•  Useful image feature detection for image recognition.

100

An example: image histogram
// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 buckets[c] += 1; // incorrect!
}

101

An example: image histogram
// Determine frequency of colors in a picture.
// Colors have already been converted into integers
// between 0 and 255.
// Each thread looks at one pixel,
// and increments a counter atomically

__global__ void histogram(int* colors, int* buckets)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 int c = colors[i];
 atomicAdd(&buckets[c], 1);
}

102

CUDA: OCCUPANCY

103

Thread Scheduling
• Order of threads within a block is undefined!

•  Threads are grouped in warps (32 threads/warp)
•  AMD calls it “a wavefront” (64 threads/wavefront)

• Order in which thread blocks are mapped and scheduled
is undefined!
•  Blocks run to completion on one SM without preemption
•  Can run in any order

•  Any possible interleaving of blocks should be valid
•  Can run concurrently OR sequentially

104

Warps = 32 threads
•  Threads are scheduled in warps

•  AMD calls them “wavefronts”

• One warp => on one SM
•  Same SM till completion

• Scheduling
•  GigaThread Unit : schedules blocks per SM’s
•  Inside SM: warp scheduler(s) +
 instruction dispatcher

•  Replace warps that are stalled by warps waiting to compute
•  Very fast context switching

Thread Scheduling
• SMs implement zero-overhead warp scheduling

•  A warp is a group of 32 threads that runs concurrently on an SM
•  At any time, the number of warps concurrently executed by an SM

is limited by its number of cores.
•  Warps whose next instruction has its inputs ready for consumption

are eligible for execution
•  Eligible Warps are selected for execution on a prioritized

scheduling policy
•  All threads in a warp execute the same instruction when selected

106

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Stalling warps
• What happens if all warps are stalled?

•  No instruction issued → performance lost

• Most common reason for stalling?
•  Waiting on global memory

•  If your code reads global memory every couple of
instructions
•  You should try to maximize occupancy

107

Occupancy
Occupancy = Active Warps / Maximum Active Warps

• Remember: resources are allocated for the entire
block!

• Resources are finite
• Utilizing too many resources per thread may limit the

occupancy
• Potential occupancy limiters:

• Register usage
• Shared memory usage
• Block size

108

Resource Limits

• Pool of registers and shared memory per SM
•  Each thread block grabs registers & shared memory
•  If one or the other is fully utilized => no more thread blocks

109

TB 0

Registers Shared Memory

TB 1

TB 2

TB 0
TB 1
TB 2

TB 0

Registers

TB 1
TB 0

TB 1

Shared Memory

How do you know what you’re using?
• Use compiler flags to get register and shared memory

usage
•  “nvcc -Xptxas –v”

• Use the NVIDIA Profiler
• Plug those numbers into CUDA Occupancy Calculator

• Maximize occupancy for improved performance
•  Empirical rule! Don’t overuse!

110

Thread divergence - penalty?
• Depends on the amount of divergence

•  Worst case: 1/32 performance
•  When each thread does something different

• Depends on whether branching is data- or ID- dependent
•  If ID – consider grouping threads differently
•  If data – consider sorting

• Non-diverging warps => NO performance penalty
•  In this case, branches are not expensive …

112

CUDA: THREAD
DIVERGENCE

113

Thread divergence
“I heard GPU branching is expensive. Is this true?”

__global__ void Divergence(float* dst,float* src)
{
 float value = 0.0f;

 if (threadIdx.x % 2 == 0)
// active threads : 50%
 value = src[0] + 5.0f;
 else
// active threads : 50%
 value = src[0] – 5.0f;

 dst[index] = value;
}

Execution

115

Worst case performance loss:
 50% compared with the non divergent case.

Another example

116

Performance penalty?
• Depends on the amount of divergence

•  Worst case: 1/32 performance
•  When each thread does something different

• Depends on whether branching is data- or ID- dependent
•  If ID – consider grouping threads differently
•  If data – consider sorting

• Non-diverging warps => NO performance penalty
•  In this case, branches are not expensive …

117

CUDA: MEMORY
COALESCING

118

Memory Coalescing
• Memory coalescing refers to combining multiple memory

accesses into a single transaction

119

120

Caching

Caching vs. Coalescing

Caching vs. Coalescing

121

Caching Coalescin
g

vs.

Consider the stride of your accesses

__global__ void foo(int* input, float3* input2) {
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 // Stride 1, full bandwidth used!
 int a = input[i];
 // Stride 2, 50% of the bandwidth is wasted
 int b = input[2*i+1];
 // “Random” stride - ?? up to 7/8 bandwidth wasted
 int c = input[f(i)];
}

122

Input[0
]

Input[1
]

Input[2
]

Input[3
]

Input[4
]

Input[5
]

Input[6
]

Input[7
]

T0 T1 T2 T3 T4 T5 T6 T7
T0 T1 T2 T3

T7 T1 T4

Stride1
Stride2
“random”

Example: Array of Structures (AoS)
Struct AoS{
 int key;
 int value;
 int flag;
};

record *d_AoS_data;
cudaMalloc((void**)&d_AoS_data, ...);

kernel {
 threadID = blockDim.x * blockIdx.x + threadIdx.x;
 // …
 d_AoS_data[threadID].value += i; // wastes bandwidth!
 // …
}

123

Example: Structure of Arrays (SoA)
Struct SoA {
 int* keys;
 int* values;
 int* flags;
};

SoA d_SoA_data;
cudaMalloc((void**)&d_SoA_data.keys, ...);
cudaMalloc((void**)&d_SoA_data.values, ...);
cudaMalloc((void**)&d_SoA_data.flags, ...);

kernel {
 threadID = blockDim.x * blockIdx.x + threadIdx.x;
…
 d_SoA_data.values[threadID] += i; // full
bandwidth!

… }

124

Memory Coalescing*
• Group memory accesses in as few memory transactions

as possible.
•  128-byte or 32-byte long lines

• Stride 1 access patterns are preferred!
•  Other patterns can still get benefits

• Structure of arrays is often better than array of structures
• Unpredictable/ irregular access patterns

•  Case-by-case performance impact

• No coalescing => performance loss ~10x or more !
•  Caching might improve this impact …

125

*http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#axzz3nJ0kBsWe

CUDA: MEMORY
COALESCING

126

Memory Coalescing
• Memory coalescing refers to combining multiple

memory accesses into a single transaction

127

Caching vs. Coalescing

128

Caching

Caching vs. Coalescing

129

Caching Coalescin
g

vs.

Consider the stride of your accesses

__global__ void foo(int* input, float3* input2) {
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 // Stride 1, full bandwidth used!
 int a = input[i];
 // Stride 2, 50% of the bandwidth is wasted
 int b = input[2*i+1];
 // “Random” stride - ?? up to 7/8 bandwidth wasted
 int c = input[f(i)];
}

130

Input[0
]

Input[1
]

Input[2
]

Input[3
]

Input[4
]

Input[5
]

Input[6
]

Input[7
]

T0 T1 T2 T3 T4 T5 T6 T7
T0 T1 T2 T3

T7 T1 T4

Stride1
Stride2
“random”

Example: Array of Structures (AoS)
Struct AoS{
 int key;
 int value;
 int flag;
};

record *d_AoS_data;
cudaMalloc((void**)&d_AoS_data, ...);

kernel {
 threadID = blockDim.x * blockIdx.x + threadIdx.x;
 // …
 d_AoS_data[threadID].value += i; // wastes bandwidth!
 // …
}

131

Example: Structure of Arrays (SoA)
Struct SoA {
 int* keys;
 int* values;
 int* flags;
};

SoA d_SoA_data;
cudaMalloc((void**)&d_SoA_data.keys, ...);
cudaMalloc((void**)&d_SoA_data.values, ...);
cudaMalloc((void**)&d_SoA_data.flags, ...);

kernel {
 threadID = blockDim.x * blockIdx.x + threadIdx.x;
…
 d_SoA_data.values[threadID] += i; // full
bandwidth!

… }

132

Memory Coalescing*
• Group memory accesses in as few memory transactions

as possible.
•  128-byte or 32-byte long lines

• Stride 1 access patterns are preferred!
•  Other patterns can still get benefits

• Structure of arrays is often better than array of structures
• Unpredictable/ irregular access patterns

•  Case-by-case performance impact

• No coalescing => performance loss 10 – 30x !

133

*http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#axzz3nJ0kBsWe

CUDA: USING SHARED
MEMORY

134

Using shared memory
• Equivalent with providing software caching

•  Explicit: Load data to be re-used in shared memory
•  Use it for computation
•  Explicit: Store results back to global memory

• All threads in a block share memory
•  Load/Store: using all threads
•  Barrier: __syncthreads

•  Guard against using uninitialized data – not all threads have finished
loading data to shared memory

•  Guard against corrupting live data – not all threads have finished
computing

135

A Common Programming Strategy

• Partition data into subsets that fit into shared memory

136

A Common Programming Strategy

• Handle each data subset with one thread block

137

A Common Programming Strategy

•  Load the subset from device memory to shared memory,
using multiple threads to exploit memory-level parallelism

138

A Common Programming Strategy

• Perform the computation on the subset from shared
memory

139

A Common Programming Strategy

• Copy the result from shared memory back to device
memory

140

Caches vs. Shared Memory
• Since Fermi, NVIDIA GPUs feature BOTH hardware L1

caches and shared memory per SM
•  They share the same space

•  ¾ Cache + ¼ Shared Memory OR
•  ¼ Cache + ¾ Shared Memory

•  L1 Cache
•  Hardware caching enabled

•  The HW decides what goes in or out and when

• Shared memory
•  Software manages what goes in/out
•  Allows more complex access patterns to be cached

141

Example: Matrix multiplication
• C = A * B

•  C(i,j) = sum(dot(row(A,i),col(B,j)))

• Parallelization strategy
•  Each thread computes one C element
•  2D kernel

142

B

C A

Matrix multiplication implementation
__global__ void mat_mul(float *a, float *b,
 float *c, int width)
{
 // calc row & column index of output element
 int row = blockIdx.y*blockDim.y + threadIdx.y;
 int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

 // do dot product between row of a and column of b
 for(int k = 0; k < width; k++) {
 result += a[row*width+k] * b[k*width+col];
}

 c[row*width+col] = result;
}

143

B

CA

Matrix multiplication performance
Loads per dot product
term

2 (a and b) = 8 bytes

FLOPS 2 (multiply and add)
AI 2 / 8 = 0.25
Performance GTX 580 1581 GFLOPs
Memory bandwidth GTX
580

192 GB/s

Attainable performance 192 * 0.25 = 48
GFLOPS

Maximum efficiency 3.0 % of theoretical
peak

144

Data reuse
• Each input element in A and B is

read WIDTH times
•  IDEA:

•  Load elements into shared memory
•  Have several threads use local version to

improve memory bandwidth

145

B

C A

WIDTH

Using shared memory
• Partition kernel loop into phases
•  In each thread block, load a tile of both

matrices into shared memory each
phase

• Each phase, each thread computes a
partial result

146

TILE_WIDTH

B

A C
1

1

3

2 3

2

Matrix multiply with shared memory
__global__ void mat_mul(float *a, float *b,
 float *c, int width) {

 // shorthand
 int tx = threadIdx.x, ty = threadIdx.y;
 int bx = blockIdx.x, by = blockIdx.y;

 // allocate tiles in shared memory
 __shared__ float s_a[TILE_WIDTH][TILE_WIDTH];
 __shared__ float s_b[TILE_WIDTH][TILE_WIDTH];

 // calculate the row & column index from A,B
 int row = by*blockDim.y + ty;
 int col = bx*blockDim.x + tx;

float result = 0;

147

Matrix multiply with shared memory
 // loop over input tiles in phases, p = crt. phase
 for(int p = 0; p < width/TILE_WIDTH; p++) {
 // collaboratively load tiles into shared memory
 s_a[ty][tx] = a[row*width + (p*TILE_WIDTH + tx)];
 s_b[ty][tx] = b[(p*TILE_WIDTH + ty)*width + col];
// barrier: ALL writes to shared memory finished
 __syncthreads();

 // dot product between row of s_a and col of s_b
 for(int k = 0; k < TILE_WIDTH; k++) {
 result += s_a[ty][k] * s_b[k][tx];
 }

// barrier: ALL reads of shared memory finished
 __syncthreads();
 }

 c[row*width+col] = result;
}

148

B

A C
1 2 3

1

2

3

Use of Barriers in mat_mul
•  Two barriers per phase:

•  __syncthreads after all data is loaded into shared memory
•  __syncthreads after all data is read from shared memory

•  Second __syncthreads in phase p guards the load in phase p+1

•  Formally, __synchthreads is a barrier for shared memory
for a block of threads:

“void __syncthreads();
waits until all threads in the thread block have reached this
point and all global and shared memory accesses made by
these threads prior to __syncthreads() are visible to all
threads in the block.”

149

Matrix multiplication performance
Original shared memory

Global loads 2N3 * 4 bytes (2N3 / TILE_WIDTH) * 4
bytes

Total ops 2N3 2N3

AI 0.25 0.25 * TILE_WIDTH

150

Performance GTX 580 1581 GFLOPs

Memory bandwidth GTX 580 192 GB/s

AI needed for peak 1581 / 192 = 8.23

TILE_WIDTH required to achieve
peak

0.25 * TILE_WIDTH = 8.23,
TILE_WIDTH = 32.9

CUDA: STREAMS

Overlap Computation and Communication
• Main idea: while executing a kernel, bring data in for the

next kernel:

What are streams?
• Stream = a sequence of operations that execute on the

device in the order in which they are issued by the host
code.

• Same stream: In-Order execution
• Different streams: Out-of-Order execution

• Default stream = Synchronizing stream
•  No operation in the default stream can begin until all previously

issued operations in any stream on the device have completed.
•  An operation in the default stream must complete before any other

operation in any stream on the device can begin.

153

Default stream: example

•  All operations happen in the same stream
•  Device (GPU)

•  Synchronous execution
•  all operations execute (in order), one after the previous has finished

•  Unaware of CpuFunction()
•  Host (CPU)

•  Launches increment and regains control

•  *May* execute CpuFunction *before* increment has finished

•  Final copy starts *after* both increment and CpuFunction()
have finished

154

cudaMemcpy(d_a, a, numBytes,cudaMemcpyHostToDevice);
 increment<<<1,N>>>(d_a);
 CpuFunction(b);
cudaMemcpy(a, d_a, numBytes,cudaMemcpyDeviceToHost);

Non-default streams
• Enable asynchronous execution and overlaps

•  Require special creation/deletion of streams
•  cudaStreamCreate(&stream1)
•  cudaStreamDestroy(stream1)

•  Special memory operations
•  cudaMemcpyAsync(deviceMem, hostMem, size,

cudaMemcpyHostToDevice, stream1)
•  Special kernel parameter (the 4th one)

•  increment<<<1, N, 0, stream1>>>(d_a)
• Synchronization

•  All streams
•  cudaDeviceSynchronize()

•  Specific stream:
•  cudaStreamSyncrhonize(stream1)

155

Computation vs. communication

156

//Single stream, numBytes = 16M, numElements = 4M
cudaMemcpy(d_a, a, numBytes, cudaMemcpyHostToDevice);
kernel<<blocks,threads>>(d_a, firstElement);
cudaMemcpy(a, d_a, numBytes, cudaMemcpyDeviceToHost);

C1060 (pre-Fermi): 12.9ms

C2050 (Fermi): 9.9ms

Computation-communication overlap[1]*

157

for (int i = 0; i < nStreams; ++i) {
 int offset = i * streamSize;
 cudaMemcpyAsync(&d_a[offset], &a[offset], streamBytes,
stream[i]);
 kernel<<blocks,threads,0,stream[i]>>(d_a, offset);
 cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes,
stream[i]);
}

C1060 (pre-Fermi): 13.63 ms (worse than sequential)

C2050 (Fermi): 5.73 ms (better than sequential)

https://github.com/parallel-forall/code-samples/blob/master/series/cuda-cpp/overlap-data-transfers/async.cu

Computation-communication overlap[2]*

158

for (int i = 0; i < nStreams; ++i) offset[i]=i * streamSize;
for (int i = 0; i < nStreams; ++i)
 cudaMemcpyAsync(&d_a[offset[i]], &a[offset[i]], streamBytes,
 cudaMemcpyHostToDevice, stream[i]);

for (int i = 0; i < nStreams; ++i)
kernel<<blocks,threads,0,stream[i]>>(d_a, offset);

for (int i = 0; i < nStreams; ++i)
 cudaMemcpyAsync(&a[offset], &d_a[offset], streamBytes,
 cudaMemcpyDeviceToHost, stream[i]);

C1060 (pre-Fermi): 8.84 ms (better than sequential)

C2050 (Fermi): 7.59 ms (better than sequential, worse than v1)

CUDA: MANY OTHER
FEATURES

159

Kepler: Dynamic parallelism

160

Kepler: Hyper-Q

161

Kepler GK110: GPU Direct

162

Unified memory

163

SUMMARY

164

Take home message
• GPUs are massively parallel architectures with limited

flexibility, but very high throughput
• Pro’s:

•  Much higher compute capabilities
•  Higher bandwidth

• Con’s
•  Limited on-card memory
•  Low-bandwidth communication with host

• Debate-able
•  Programmability & productivity

165

Open research questions
• Shall we port all applications on GPUs?

•  If yes – can we automate the process?
•  If not – can we decide how to select?

• Shall we use GPUs in large-scale systems?
• Shall we use heterogeneous CPU+GPU systems?
• Can we improve the GPU design …

•  For HPC?
•  For other application domains?

166

Questions? Comments? Suggestions?
• A.L.Varbanescu@uva.nl

… also if you want to work on GPU-related projects OR in a
team that works on heterogeneous computing.

… All you have to do is ask J

167

