
Content

• Introduction to virtualization
• Virtualization through VM
• Virtualization through Containers

UVA HPC & BIG DATA COURSE

Virtualisation
Adam Belloum

From mono-core to exa-scale computer

3Bigger systems

Abstraction
Virtualisation

Ag
gr

eg
at

io
n

No central control

Re
lia

bl
e

fa
st

 n
et

w
or

k

Unreliable not very fast network

central control central control

central control

power wall and

… From ~ 1986 to ~ 2023
CPP Landscape

Hardware platform (BIOS)

Virtualisation environment components

Service container allows for running multiple services on one computer/OS

• Web Services, WSDL
• Services isolation

Y. Demchenko 27-28 Nov 2012, HK PolyU 4

OS

Hardware platform (BIOS)

applications

OS

Service container
(Tomcat, ServiceMix)

ServMgnt

Web based Application and Web Services

Services

Abstract Pool automate

Content

• Virtualization
• Virtualization through VM
• Virtualization through Containers

Origins of the Virtualization

• During the initial surge of interest in
virtualization in the 1960s the motivating
factors were strong.
– Operating systems ran directly on hardware,

providing services directly to applications

– BUT compatibility was a major issue due
to the number of different architectures
being pioneered at the time

Frist attempt

• IBM developed the VM370 in the early 70’s,
“the limitations of the hardware of the time along with
inadequate/awkward architectures hampered progress”

• In 1998, VMware figured out how
to virtualize the x86 platform,
once thought to be impossible,
and created the market for x86
virtualization.

An old idea: x86 hardware virtualization
http://www.os2museum.com/wp/?p=1213

http://www.os2museum.com/wp/?p=1213

Virtualization types
• Operating system
• Paravirtualization (OS assisted Virtualization)
• Full virtualization
• Hardware assisted

Virtualization is now a must
• as data centres and server farm populations

grew from hundreds to hundreds of
thousands of servers
Ømaintaining Large collection of small physical

machines became inefficient and expensive to run

Virtualization offers the opportunity
to consolidate a large number of small machines on

one larger server, easing manageability and
allowing resources to be effectively prioritized

Hardware platform (BIOS)

Virtualisation environment components

11

Hypervisor (I/O virtualisation)

OS

Virtualisation and hypervisor allows for running multiple OS on one computer/OS

• Cloud Management Software provides flexible VM management

• Hypervisor provides VM isolation and CPU, Memory, I/O virtualisation

Simple Virtualisation

model

Cloud Services

model

Y. Demchenko 27-28 Nov 2012, HK PolyU

VM (Guest OS)

ServMgnt

Service container

Services

Hardware platform (BIOS)

Hypervisor (I/O virtualisation)

Host OS

CMS (OpenNebula, OpenStack)

VM (Guest OS)

Services

ServMgnt

Service container

Host

Content

• Virtualization
• Virtualization through VM
• Virtualization through Containers

Containers from Scratch

containers are just isolated groups of
processe(s) running on a single host. That
isolation leverages several underlying
technologies built into the Linux kernel:
– namespaces
– cgroups

Source: Eric Chiang “Containers from Scratch”
https://ericchiang.github.io/post/containers-from-scratch/

prominent advantages of containers

• Flexibility
• Convenience
• Consistent
• Reproducibility

https://ericchiang.github.io/post/containers-from-scratch/

Linux Kernel Support

• cgroups: limit how much
resource the process
can use
– CPU
– Memory

– Network

• namespaces: limit what
the process can see
– pid

– net
– mnt

– ipc

Process of creating a container
System Net
Namespace

- Networks (eth)
- other network

resources

System mnt
Namespace

Isolation of
mountpoints /,
/dev, /boot, …

System ipc
Namespace

Isolation of system
V IPC objects and
message queues

System uts
Namespace

Isolation of
system identifiers
(hostname)

System PID
Namespace

process PID

System
(init)

1

[kthreadd] 2

Container PID
Namespace

PID process

1 shell

2 top

container Net
Namespace

- Networks
(veth)

- other network
resources

container mnt
Namespace

Isolation of
mountpoints /,
/dev, /boot, …

Container ipc
Namespace

Isolation of system V
IPC objects and
message queues

container uts
Namespace

Isolation of
system identifiers
(hostname)

System uid
Namespace

uid user

0 root

1 bin

2 daemon

2310
72

Unprivile
ged user

1000 user1

cgroups

docker
process

1181

Shell 1194

top 7826

2

container uid
Namespace

user uid

Root
privileged
user

0

Vi
rt

ua
l b

rid
ge

Container vs Container-image

Container-Image
• Binary representation of the

container stored on disk

• image layering: Parent child
relationships
– Image can be created starting from

an existing image
– The tree structure of image helps

to fix vulnerability

• Images can be created/built from
“configuration file” (dockerfile)
– but also from running containers

(save container instance

Container
• a running instance of Container-

Image

• packaged with its dependencies
– Nothing is installed on the host

multiple container with conflicting
libs can run on the same host.

– When the container stops everything
go to clean state

• The lifecycle of a process running
into the container is tight to the
lifecycle of the container
– process state

Container vs Container-image

Terminology

Container Image
• Persisted snapshot that can be run

– images: List all local images
– run: Create a container from an

image & execute a command in it
– tag: Tag an image
– pull: Download image from

repository
– rmi: Delete a local image

• This will also remove intermediate
images if no longer used

Container
• Runnable instance of an image

– ps: List all running containers
– ps –a: List all container (incl.

stopped)
– top: Display processes of a

container
– start: Start a stopped container
– stop: Stop a running container
– pause: Pause all processes within

a container
– rm: Delete a container
– commit: Create an image from a

container

Example of container technology
Docker

• …
• 2008: LXC (linux Container)
• 2013: Docker è build on LXC
• 2016: Docker 1.10 è runc and containerd

Docker image
• is a the union of one more read-only layers
• Created following instruction defined in Dockerfile
• Cache option to share layers.
• Uses volumes to store data outside the container
• Default docker storage /var/lib/docker/

Sharing layers across containers

(a) (b)

(c)
(d) (e)

Content

• Virtualization
• Virtualization through VM
• Virtualization through Containers
• VM vs Contianers

VM vs containers

Why are containers lightweight?

Bins/
Libs

App A

Original App

(No OS to take
up space, resources,
or require restart)

App Δ

Bins/

App A

Bins/
Libs

App A’

Bins/
Libs

Modified App

Copy on write capabilities
allow us to only save the
diffs Between
container A & container A’

VMs
Every app, every copy of an
app, and every slight modification
of the app requires a new virtual server

App A

Guest
OS

Bins/
Libs

Copy of App

No OS. Can
Share bins/libs

App A

Guest
OS

Guest
OS

VMs Containers

Changes and Updates

Docker Engine

Docker
Container

Image
Registry

Docker Engine

Push

Update

Bins/
Libs

App
A

App Δ

Bins/

Base
Container

Image

Host is now running A’’

Container
Mod A’’

App Δ

Bins/

Bins/
Libs

App
A

Bins/

Bins/
Libs

App
A’’

Host running A wants to upgrade to A’’.
Requests update. Gets only diffs

Container
Mod A’

Containers lifecycle management tools

1. Containerization
2. Discovery and Global Configuration Stores
3. Networking Tools
4. Scheduling, Cluster Management, and

Orchestration

Reference: The Docker Ecosystem: An Introduction to Common Components
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-

introduction-to-common-components

https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-introduction-to-common-components

Container technologies

• Docker (1)

• Singularity (2)

• Charliecloud(3)

• Shifter(4)

• LXC, OpenVZ, uDocker …

(1) https://docker.org
(2) https://singularity.lbl.gov
(3) https://charliecloud.readthedocs.io/en/latest/
(4) https://www.nersc.gov/research-and-development/user-defined-images/

https://singularity.lbl.gov/
https://github.com/indigo-dc/udocker
https://www.nersc.gov/research-and-development/user-defined-images/

