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Hardware platform (BIOS)

Virtualisation environment components

Service container  allows for running multiple services  on one computer/OS

• Web Services, WSDL
• Services isolation
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Origins of the Virtualization

• During the initial surge of interest in 
virtualization in the 1960s the motivating 
factors were strong. 
– Operating systems ran directly on hardware, 

providing services directly to applications 

– BUT compatibility was a major issue due 
to the number of different architectures 
being pioneered at the time



Frist attempt 

• IBM developed the VM370 in the early 70’s, 
“the limitations of the hardware of the time along with 
inadequate/awkward architectures hampered progress”

• In 1998, VMware figured out how
to virtualize the x86 platform, 
once thought to be impossible, 
and created the market for x86 
virtualization. 

An old idea: x86 hardware virtualization
http://www.os2museum.com/wp/?p=1213

http://www.os2museum.com/wp/?p=1213


Virtualization types
• Operating system
• Paravirtualization (OS assisted Virtualization)
• Full virtualization
• Hardware assisted 



Virtualization is now a must
• as data centres and server farm populations 

grew from hundreds to hundreds of 
thousands of servers 
Ømaintaining Large collection of small physical 

machines became inefficient and expensive to run

Virtualization offers the opportunity 
to consolidate a large number of small machines on 

one larger server, easing manageability and 
allowing resources to be effectively prioritized



Hardware platform (BIOS)

Virtualisation environment components
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Hypervisor (I/O virtualisation)

OS

Virtualisation and hypervisor allows for running multiple OS on one computer/OS

• Cloud Management Software provides flexible VM management

• Hypervisor provides VM isolation and CPU, Memory, I/O virtualisation

Simple Virtualisation

model

Cloud Services

model

Y. Demchenko 27-28 Nov 2012, HK PolyU

VM (Guest OS)

ServMgnt

Service container

Services

Hardware platform (BIOS)

Hypervisor (I/O virtualisation)

Host OS

CMS (OpenNebula, OpenStack)

VM (Guest OS)

Services

ServMgnt

Service container

Host



Content 

• Virtualization 
• Virtualization through VM
• Virtualization through Containers



Containers from Scratch

containers are just isolated groups of 
processe(s) running on a single host.  That 
isolation leverages several underlying 
technologies built into the Linux kernel: 
– namespaces
– cgroups

Source: Eric Chiang “Containers from Scratch” 
https://ericchiang.github.io/post/containers-from-scratch/

prominent advantages of containers

• Flexibility 
• Convenience 
• Consistent
• Reproducibility 

https://ericchiang.github.io/post/containers-from-scratch/


Linux Kernel Support

• cgroups: limit how much 
resource the process 
can use
– CPU
– Memory

– Network

• namespaces: limit what 
the process can  see
– pid

– net
– mnt

– ipc



Process of creating a container
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Container vs Container-image

Container-Image
• Binary representation of the 

container stored on disk

• image layering: Parent child 
relationships
– Image can be created starting from 

an existing image
– The tree structure of image helps 

to fix vulnerability 

• Images can be created/built from 
“configuration file” (dockerfile) 
– but also from running containers 

(save container instance

Container
• a running instance of Container-

Image

• packaged with its dependencies 
– Nothing is installed on the host 

multiple container with conflicting 
libs can run on the same host.

– When the container stops everything 
go to clean state

• The lifecycle of a process running 
into the container is tight to the 
lifecycle of the container
– process state



Container vs Container-image



Terminology

Container Image
• Persisted snapshot that can be run

– images: List all local images
– run: Create a container from an 

image & execute a command in it
– tag: Tag an image
– pull: Download image from 

repository
– rmi: Delete a local image

• This will also remove intermediate 
images if no longer used

Container 
• Runnable instance of an image

– ps: List all running containers
– ps –a: List all container (incl. 

stopped)
– top: Display processes of a 

container
– start: Start a stopped container
– stop: Stop a running container
– pause: Pause all processes within 

a container
– rm: Delete a container
– commit: Create an image from a 

container



Example of container technology 
Docker

• …
• 2008: LXC (linux Container)
• 2013: Docker è build on LXC 
• 2016: Docker 1.10 è runc and containerd

Docker image
• is a the union of one more read-only layers
• Created following instruction defined in Dockerfile
• Cache option to share layers. 
• Uses  volumes to store data outside the container
• Default docker storage /var/lib/docker/



Sharing layers across containers

(a) (b) 

(c)
(d) (e)
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VM vs containers



Why are containers lightweight?
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Changes and Updates

Docker Engine
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Containers lifecycle management tools 

1. Containerization
2. Discovery and Global Configuration Stores
3. Networking Tools
4. Scheduling, Cluster Management, and 

Orchestration

Reference: The Docker Ecosystem: An Introduction to Common Components
https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-

introduction-to-common-components

https://www.digitalocean.com/community/tutorials/the-docker-ecosystem-an-introduction-to-common-components


Container technologies 

• Docker (1)

• Singularity (2) 

• Charliecloud(3)

• Shifter(4)

• LXC, OpenVZ, uDocker …

(1) https://docker.org
(2) https://singularity.lbl.gov
(3) https://charliecloud.readthedocs.io/en/latest/
(4) https://www.nersc.gov/research-and-development/user-defined-images/

https://singularity.lbl.gov/
https://github.com/indigo-dc/udocker
https://www.nersc.gov/research-and-development/user-defined-images/

