HPC & Big Data

Adam S.Z Belloum

Software and Network engineering group
University of Amsterdam

Introduction to
MapReduce programing model

Content

Introduction

Master/Worker approach
MapReduce Examples

Distributed Execution Overview

Data flow

Coordination

~ailure

Partitioning function

Hadoop (example of implementation)

Problem: lots of data

Back-of-the-envelop estimate:

— 20+ billion web pages x 20KB = 400+ terabytes

One computer can read 30-35 MB/sec from disk

— ~four months to read the web

~1,000 hard drives just to store the web

Even more to do something with the data

http://ccgrid07.Incc.br/docs/industry_track/Google.pdf

Mooy

O reas Lim=t hun

e Lasks 3

for

(mapred rod

o A

ot put

perceant

L LI

Dt e

L~

Lo any

spachn hadoog wnsnplos Lot amor! Tot e

Pmaprad sap Fasks spoimiat lve sae
it dve mamcut bon=lales Dasprsd Tl
o lowstart ap ot od nage~ mapred

! magred 10

shutfls serge parosnt

Lashy W

wivon! 15 “Deaprod 1

Java ot a=" Xaw

L srge threshols

apred sarxthreads

wodloab-{alrse

i

1

J

-
e
ol

o~

sy

)

throatanustar

at

™

Dvager ol
ul o=ty
. parall

po whal

Dle suet

ehiid Yava

dod ekt hrenis

[maprod

e mapt iy

we Dmagred . |

wl LR |
fle. inpwt
' "v'.v-J 1oh reduce

L AL

ot &=

t

Dewy

LIRS

pnarate a

MAPR

ok | matTrag

OV Unlton * 10

Cluster Heat Map - 1003 Nodes Y

(1] B

A common situation

same computations different dataset

a large amount of consistent data

If the data can be decomposed

into equal-size partitions,

we can devise a parallel solution.

If for each array element,

— no dependencies in the

computations,

— and no communication are required swsmyi swarsyz subarays
between tasks

http://code.google.com/edu/parallel/mapreduce-tutorial.html#MapReduce

What is MapReduce?

A programming model

— Origin in functional programming like Lisp

— (& its associated implementation)

For processing large data set

Exploits large set of commodity computers
Executes process in distributed manner

Offers high degree of transparencies

WING Group Meeting, 13 Oct 2006 Hendra Setiawan

Example — Programming model

employees. txt

Smith John $90,000
Brown David $70,000
Johnson George $95,000
Yates John $80,000
Miller Bill $65,000
Moore Jack $85,000
Taylor Fred $75,000
Smith David $80,000
Harris John $90,000

4

Q: “What is the frequency
of each first name?”

def getName (line):
return line.split(‘\t’)[1]

def '‘addCounts (hist, name):
hist[name] = \
hist.get (name,default=0) + 1
return hist

1 »

input = open(‘employees.txt’, ‘r’)
intermediate =/map (getName, input)

result = reduce (addCounts, \
intermediate, {})

Example — Programming model

mapper
employees. txt

def getName (line):

it John 590, 000 return (line.split(\t')[1l], 1)

Brown David $70,000

Johnson George $95,000 def addCounts (hist, (name, c)):

Yates John $80,000 hist[name] = \

Miller Bill 365,000 hist.get (name,default=0) + c

Moore Jack $85,000 .

Taylor Fred $75,000 return hist

Smith David $80,000

Harris John $90,000 input = open(‘employees.txt’, ‘r’)
intermediate = map (getName, input)

£;7 result)\ = reduce (addCounts, \

intermediate, {})

Q: “What is the frequency Key-value iterators
of each first name?”

Content

Master/Worker approach
MapReduce Examples

Distributed Execution Overview

Data flow

Coordination

~ailure

Partitioning function

Hadoop (example of implementation)

The Master/Worker approach

* The MASTER:

— initializes the array and splits it up according to the number
of available WORKERS

— sends each WORKER its subarray
— receives the results from each WORKER

* The WORKER:

— receives the subarray from the MASTER
— performs processing on the subarray
— returns results to MASTER

http://code.google.com/edu/parallel/mapreduce-tutorial.html#MapRedice

MapReduce

Workers are assigned
— A map function
— A reduce function

Input: a set of key/value pairs
User supplies two functions:

(k1,v1) is an intermediate key/value pair
Output is the set of (k1,v2) pairs

CS 345A Data Mining

MapReduce: The Map Step

Input Intermediate
key-value pairs key-value pairs

R
AW E o g
Az, o4

Al N7 4

CS 345A Data Mining

MapReduce: The Reduce Step

Output

Intermediate Key-value groups key-value pairs

key-value pairs

o oAM= ®®
oM .. oMy — o0
0.

o N

7 @

CS 345A Data Mining

Content

MapReduce Examples

Distributed Execution Overview

Data flow

Coordination

~ailure

Partitioning function

Hadoop (example of implementation)

MapReduce Examples

* Distributed grep

* Count of URL Access Frequency
* Reverse Web-Link Graph

* Term-Vector per Host

* Inverted Index

Inverted Index:

* map function parses each document, and emits a sequence of <word, document |ID>

* reduce function accepts all pairs for a given word, sorts the corresponding document
IDs and emits a <word, list(document ID)> . The set of all output pairs forms a simple
inverted index. It is easy to augment this computation to keep track of word positions

MapReduce Examples in Science

Internet

A

Form
FASTA File Blocking block
N Sequences Pairings

[

Sequence
alignment

' Read s‘ i - Instruments
/ Alignment —

[
[

Dissimilarity
Matrix

Pairwise
clustering

Visualization

Plotviz

N(N-1)/2
value

Figure 1 Pipeline for analysis of metagenomics Data

Clouds and MapReduce for Scientific
Application

http://grids.ucs.indiana.edu/ptliupages/
publications/CloudsandMR.pdf

130

H"*-,
i S
—_——
: —¢ . X
120 T »
5 — =) o
110 - - o
v v
——
o}
o

100

90 o

80

»-x Hadoop VM

70 || ¥ EC2

m-@ Azure

0 | | -9 Hadoop Bare Metal
@ © DryadLINQ

Time to process 458 reads (1 files) per core

S%O 1000 1500 2000 2500 3000 3500 4000
Number of Files

Figure 3: Time to process a single biology sequence file
(458 reads) per core with different frameworks[18]

Example: Word Count (1)

 We have a large file of words, one word to a line

e Count the number of times each distinct word
appears in the file

* Sample application:

— analyze web server logs to find popular URLs

Example: Word Count (2)

e Case 1: Entire file fits in memory

e Case 2: File too large for mem, but all
<word, count> pairs fit in mem

* Case 3: File on disk, too many distinct words
to fit in memory

$ sort datafile | uniqg -c

Example: Word Count (3)

To make it slightly harder, suppose we have a large
corpus of documents

Count the number of times each distinct word occurs
in the corpus

$ words (docs/*) | sort | uniq -c

— where words takes a file and outputs the words in it, one
toaline

The above captures the essence of MapReduce
— Great thingis it is naturally parallelizable

CS 345A Data Mining

Distributed Word Count

Split data | — count——| count

Split data | — count——| count

Very

merged
big | |Splitdata |— count—>| count |T"merge = | -
data - .

Split data |— count——>| count

WING Group Meeting, 13 Oct 2006 Hendra Setiawan

Word Count using MapReduce

map(key, value):
// key: document name; value: text of document
for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
result=0
for each count v in values:
result +=v
emit(result)

CS 345A Data Mining

Content

Data flow

Coordination

~ailure

Partitioning function

Hadoop (example of implementation)

Data flow

* Input, final output
— are stored on a distributed file system
* Haadoop distributed Filesystem (HDFS) = (googleFileSystem)

— Scheduler tries to schedule map tasks “close” to
physical storage location of input data

 Intermediate results

— are stored on local FS of map and reduce workers
e Haadoop local Filesystem (HFS or FS)

* Qutput is often input to another MapReduce task

CS 345A Data Mining

Input file

Execution model: Flow

SPLIT O

7

SPLIT 1

Il

7

SPLLI Z

Yates John $80,

7

~

SPLIT 3

/

Smith John $90,000

000

| Key/value
— John 1 l l iterators
MAPPER
John 2 Output file
REDUCER

(/ PART 0

o R
MAPPER . PART 1
~(MAPPER

—Sort-merge

—All-to-all, hash partitioning

—Sequential scan 25

Distributed Execution Overview

\
’ \
/ \
’
, \

fo rk ,/'/ fO rk i \\\\ fo rk
assign ‘ A
g a55|gn
< MNa \ \
4 P/// \\r\educ\e

K/

Input Data

local write

write

read

remote

I"Qﬁf‘l

7. When all map tasks and reduce tasks have been completed, the master wakes up the
user program. At this point, the MapReduce call in the user program returns back to the
user code. -

Content

Coordination

~ailure

Partitioning function

Hadoop (example of implementation)

How many Map and Reduce jobs?

* M map tasks, R reduce tasks

 Rule of thumb:

— Make M and R much larger than the number of
nodes in cluster

— One DFS chunk per map is common

— Improves dynamic load balancing and speeds
recovery from worker failure

* Usually R is smaller than M, because output is
spread across R files

CS 345A Data Mining

Coordination

* Master data structures
— Task status: (idle, in-progress, completed)

— |dle tasks get scheduled as workers become
available

— When a map task completes,

e it sends the master the location and sizes of its R
intermediate files (one for each reducer)

* Master pushes this info to reducers

* Master pings workers periodically to detect
failures

CS 345A Data Mining

Execution model: Placement

HOST 1
e ~ HOST 2
(

SPLIT O || SPLIT 4)
SPLIT 2
MAPPER <

MAPPER HOST 3
HOST 0 SPLIT 3 - N
- SPLIT O SPLIT 2 || SPLIT 1
SPLITO || sPLIT 1 || U a

J

L7 MAPPER
MAPPER
- SPLIT 4
SPLIT 3
-
L e

J
J

HOST 5

. HOST 6 HOST 4
...... s p J
s (e

\—’ J ~ g

Computation co-located with data (as much as possible)

SPLIT 3

Combiners

e Often a map task will produce many pairs of the
form (k,v1), (k,v2), ... for the same key k

— E.g., popular words in Word Count

e Can save network time by pre-aggregating at
mapper

— combine(k1, list(v1)) = v2
— Usually same as reduce function

 Works only if reduce function is commutative and
associative

CS 345A Data Mining

Execution model: Placement

HOST 1
- HOST 2
SPLIT O || SPLIT 4 || (])
SPLIT 3 || SPLIT 2
MAPPER <

HOST 0 SPLIT 3 © - N
¢ \ - SPLIT O 1| 1] SPLIT 2 || SPLIT 1
SPLIT O || SPLIT 1

J 74
L/ MAPPER
MAPPER >
(O SPLIT 4
SPLIT 3
g
L I 74

J
J

HOST 5

HOST 6 HOST 4
(1\ J
— @

I

@ COMBINER

Rack/network-aware

Content

~ailure
Partitioning function
Hadoop (example of implementation)

Failures

 Map worker failure

— Map tasks completed or in-progress at worker are
reset to idle

— Reduce workers are notified when task is
rescheduled on another worker

 Reduce worker failure
— Only in-progress tasks are reset to idle

* Master failure
— MapReduce task is aborted and client is notified

CS 345A Data Mining

Content

e Partitioning function
 Hadoop (example of implementation)

Partition Function

* |Inputs to map tasks
— are created by contiguous splits of input file

* Forreduce,

— we need to ensure that records with the same
intermediate key end up at the same worker

— System uses a default partition function e.g.,
hash(key) mod R

e Sometimes useful to override

— E.g., hash(hostname(URL)) mod R ensures URLs from
a host end up in the same output file

CS 345A Data Mining

Map Reduce

— — R
Very M | cpe . E
big L A | Partltlo.nlng d D || Result
Function U
data o P
2 C
— S E
Map: * Reduce:
— Accepts — Accepts
* input key/value pair * intermediate key/value* pair
* intermediate key/value pair * output key/value pair

WING Group Meeting, 13 Oct 2006 Hendra Setiawan

Partitioning Function

Input

© OO 6O

Intermediate | kl:v kl:v k2:v

k3\k4\

k4:v k5:v

k4:v

kl:v k3:v

Grouped

Output

[[Gmup by Keyj]

kl:v,v,v,v | k2:v |k3:v,v [kd:v,v,v [kS:v
S T T T

http://research.google.com/archive/mapreduce-osdiO4-slides/index-auto-0007.html

38

Partitioning Function

kl:wvkl:wv k2

Partitioning Function

KNI

Sort and Group
kd:v.vv

6 66

—————————

¢

e

k3:v kd:v

kd:v k5:v

Partitioning Function

¢

¢

kd v

kl:v k3w

Partitioning Function

Sort and Group

kl:vvyvy

6

E

http://research.google.com/archive/mapreduce-osdiO4-slides/index-auto-0008.html

39

Partitioning Function (2)

 Default: hash (key) mod R

* Guarantee:
— Relatively well-balanced partitions
— Ordering guarantee within partition

* Distributed Sort
— Map:
emit (key,value)

— Reduce:
emit (key,value)

MapReduce

e Distributed Grep
— Map:
1f match (value,pattern) emit (value, 1)

— Reduce:

emit (key, sum(value*))

e Distributed Word Count
— Map:
for all w in value do emit(w, 1)

— Reduce:

emit (key, sum(value*))

MapReduce outside Google

 Hadoop (Java)
— Emulates MapReduce and GFS

— The architecture of Hadoop MapReduce and DFS
is master/slave

Master Slave
MapReduce | jobtracker |tasktracker
DFS namenode | datanode

Hadoop

Spiros Papadimitriou, Google meng Sun, IBM Research Rong Yan, Facebook

Hadoop

Hadoop

Hadoop

46

Hadoop

Hadoop

48

Hadoop

49

Hadoop

50

Hadoop

51

Hadoop: HDFS

 Hadoop's Distributed File System is designhed to
reliably store very large files across machines in a
large cluster.

 Hadoop DFS stores each file as a sequence of blocks,
all blocks in a file except the last block the same size.

— Blocks belonging to a file are replicated for fault tolerance.
— Block size & replication factor are configurable per file.

— Files in HDFS are "write once" and have [bitibuted storage (read-opt) |
= Replication / scalability a
strictly one writer at any time. ; _ooogleflesystem (GFS)

Zoo
Keeper

MapReduce HDFS

Core AVro

Hadoop: HDFS

 An HDFS installation consists of a single Namenode
a (master server)that

— manages the file system namespace
— regulates access to files by clients.

 And a number of Datanodes, one per node in the
cluster, which

— manage storage attached to the nodes that they run on

Hadoop: HDFS

*Namenode
—Makes filesystem namespace operations like
opening, closing, renaming etc. of files and
directories available via an RPC interface.
—determines the mapping of blocks to Datanodes.

Datanodes are responsible
—for serving read & write requests from filesystem
clients
—perform block creation, deletion, and replication
upon instruction from the Namenode.

Summary

e Asimple programming model for processing
arge dataset on large set of computer cluster

* Fun to use, focus on problem, and let the
ibrary deal with the messy detail

References

* Original paper (http://labs.google.com/
papers/mapreduce.html)

* On wikipedia (

nttp://en.wikipedia.org/wiki/MapReduce)

 Hadoop — MapReduce in Java (http://

ucene.apache.org/hadoop/)

* Starfish - MapReduce in Ruby (http://
rufy.com/starfish/)

