Spar
Apache Spark

28-01-2016
Jeroen Schot - jeroen.schot@surfsara.nl

Mathijs Kattenberg - mathijs.kattenberg@surtsara.nl %ARA
Machiel Jansen - machiel.jansen@surfsara.n|

mailto:jeroen.schot@surfsara.nl
mailto:mathijs.kattenberg@surfsara.nl?subject=
mailto:machiel.jansen@surfsara.nl

A Data-Parallel Approach

Restrict the programming interface so that the system can do more
automatically. Use ideas from functional programming:

‘Here Is a tunction, apply it to all of the data”
e | do not care where it runs (the system should handle that)

e Feel free to run it twice on different nodes (no side effects!)

MapReaduce Programming Moadel

Map function: (K1, V1) —> list(Ko, V2)

Reduce function: (Ka, list(V2)) —> list(Ks, V3)

<How,1>
B — <now, 1> <How,1 1> —
How now | <brown, 1> <now,1 1> brown 1
Brown cow — <cow,1> | <brown,1> | cow
—— <How, 1> <cow, 1> — does 1
<does,1> <does,1> How 2
How doesH—— | <it,1> <it,1> | it 1
— 1> — now 2
It work oWTT—~—0_ :\:gvrvk 1> swork1> work 1
| Reduce
o
7
\:_/ Local file systems _/
Map
Input Output

Distributed file system Distributed file system @ARA

Problems with MapReduce

» Difficulty to convert problem to MR algorithm:
MR not expressive enough??

 Performance issues due to disk |/O between every job:
Unsuited for iterative algorithms or interactive use

Higher Level Frameworks

cascading

TN
oS8 < U

Specialized systems

(Pregel) < Giraph)

(GraphlLab }
(Dremel) (Dril)
(MapReduce } - = — (Tez >
<) ‘ mpala)

(MillW heel) (S4) (Storm)

General Batch Processing Specialized Systems:
iterative, interactive, streaming, graph, etc.

http://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark ®ARA

http://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Solved?

 Performance issues solved only partially

 How about workflows that need multiple components?

Enter Spark

2004 2010
MapReduce paper Spark paper

wa] Jmor] Jawe] Jawe| wo] [wn] wn

2002 2008 2014

MapReduce @ Google Hadoop Summit Apache Spark top-level
2006
Hadoop @ Yahoo!

Spark’s approach

o (General purpose processing framework for DAG's
e Fast data sharing

* |diomatic API (if you know Scala)

Spark ecosystem

Spark MLlIib
Streamingll (machine

learning)

Apache Spark

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica

University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory

can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a

restricted form of shared memory, based on coarse-

tion, which can dominate application execution times.
Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] is a system for
iterative graph computations that keeps intermediate data
in memory, while HalLoop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (e.g., looping a series of
MapReduce steps), and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets

https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

RDD properties

e Collection of objects/elements
e Spread over many machines
e Built through parallel transformations

e |mmutable

RDD origins

There are two ways to create a RDD from scratch

Parallelised collections:
distribute existing single-machine collections (List, HashMap)

Hadoop datasets:
files from HDFS-compatible filesystem (Hadoop InputFormat)

Operations on RDDs

Transformations:

e Lazily computed
e Create new RDD
« Example: ‘'map’

Actions:
* [riggers computation
e Example: ‘count’, ‘'saveAs lextrile

An RDD from HD

RAM Host A

RAM Host B

mary had a

and everywhere

little lamb

that mary went

its fleece was

the lamb was

white as snow

sure to go

HDFS

HDFS

RAM Host A

mary had a

little lamb

its fleece was

white as snow

—

RAM Host B

and everywhere

that mary went

the lamb was

sure to go

ﬁ

A4 4 N 4 4 &

RAM Host A

mary

had

SNOW

—

RAM Host B

and

everywhere

go

ﬁ

rdd.flatMap(lambda s: s.split(" "))

SARA

RAM Host A

mary had a

little lamb

its fleece was

white as snow

—

RAM Host B

and everywhere

that mary went

the lamb was

sure to go

—

rdd.flatMap(lambda s: s.split(" "))

A4 4 R 2 4 & 4

RAM Host A

mary

had

SNOW

—

RAM Host B

and

everywhere

go

—

A4 4 R 2 4 & 4

RAM Host A

(mary, 1)

(had, 1)

(snow, 1)

—

RAM Host B

(and, 1)

(everywhere, 1)

(go, 1)

—

rdd.map(lambda w: (w, 1))

A A 4 R 4 4 & 4

RAM Host A

(mary, 1)

(had, 1)
(show, 1)
—
RAM Host B
e)
(and, 1)

(everywhere, 1)

(9o, 1)

ﬁ

——

RAM Host A

(everywhere, 1)

(snow, 1)

(lamb, 2)

—

RAM Host B

(and, 1)

(mary, 2)

(had, 1)

ﬁ

rdd.reduceByKey(lambda x, y: X + V)

Transtormations

RDD’s are created from other RDD’s using transformations:

map(f) => pass every element through function f

reduceByKey(t) => aggregate values with same key using f

Transtormations

RDD’s are created from other RDD’s using transformations:

map(f) => pass every element through function f
reduceByKey(f) => aggregate values with same key using f
filter(f) => select elements for which function fis true
flatMap(f) => similar to map, but one-to-many

join(r) => joined dataset with RDD r

union(r) => union with RDD r

sample, intersection, distinct, groupByKey, sortByKey, cartesian...

Actions

Transformations give no output (no side-effects)
and don’t result in any real work (laziness)

Results from RDD’s via actions:

count() => return the number of elements
take(n) => select the first n elements

saveAsTextFile(file) => store dataset as file

| Ineage, laziness & persistence

o Spark stores lineage information for every RDD partition
* |Intermediate RDDs are computed only when needed

* By default RDDs are not retained in memory
— use the cache/persist methods on ‘hot” RDDs

Narrow transformation Wide transformation

* Input and output stays in same * Input from other partitions are required
partition « Data shuffling is needed before

 No data movement is needed processing

,'-------------------------------—\
\-------------------------’
’------------------------—
7 ~
\----------------------------_’

g % TN I BN SN AE R TE BE OTE SR UE SR SR SR TR BE BE SR TR EE TR SR U UE GE R SR AR TE R BE SE EE EE TR R AR EE WS-
- .

o).
a//ﬂﬁﬂ/r o
\ //JW/W%
000)s 0000
vWAvi\ P - |

il
’

stage3 .-

""" groupBy
union

.....................................

~ -
ll

PalrkDDs

RDDs of (key, value) tuples are ‘special’
A number of transformations only for PairBRDDs:
e reduceByKey, groupByKey

* |OINn, COgroup

Spark: a general framework

Spark aims to generalize MapReduce to support new applications with a more
efficient engine, and simpler tfor the end users.

Write programs in terms of distributed datasets and operations on them

Accessible from multiple programming languages:

o Sca‘a !Scala
S,
e Java EEE
* Python e
python

* R (only via dataframes)

Execution Process

RDD Objects DAG Scheduler Task Scheduler Worker
| | Koy Cluster
- manager Threads
—— TaskSet Task Block
a—— pa manager
rddl.joq n(r'dC(lZ; split graphinto launch tasks via execute tasks
.groupBy (..
Filter(stages of tasks cluster manager
. submit each retry failed or store and serve
build operator DAG stage as ready straggling tasks blocks

An Executing Application

Driver Program
SparkContext Cluster Manager
Worker Node

Shared variables

* |n general: avoid!
 \When needed: read-only

* [wo helpful types:
broadcast variables, accumulators

Broadcast variables

Wrapper around an object

Copy send once to every worker

Use case: lookup-table

Should fit in the main memory of a single worker

Can only be used read-only

Accumulators

o Special variable to which workers can only “add”
* Only the driver can read

o Similar to MapReduce counters

RDD limitations

 Reading structured data sources (schema)
* Juple juggling
(/a, b, c]) => (a, [a, b, c]) => (c, [a, b, c]) etc

e Flexibility hinders optimiser

SparkSQL & DataFrames

Inspiration from SQL & Pandas
Columnar data representation
Automatically reading data in Avro, CSV, JSON, .. format

Easy conversion from/to RDD'’s

DataFrame performance

Spark Python DF

Spark Scala DF

—

RDD Python

RDD Scala

0 2 4 6 38 10

Performance of aggregating 10 million int pairs (secs)

https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sqgl-python-dataframes-and-more.htm| %ARA

https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html

Discretized Streams

RDD @ time 1 RDD @tme2 RDD@time3 RDD @ time 4

datafrom = datafrom = datafrom = datafrom =
timeOto 1 time 1to 2 time 2to 3 time3to4

DStream = =

lines lines from lines from lines from lines from
DStream time 0 to 1 time 1 to 2 time 2 to 3 time 3to 4

flatMap
operation

words
DStream

words from words from words from
time 1to 2 time 2to 3 time3to 4

words from
timeOto 1l

http://spark.apache.org/docs/latest/streaming-programming-guide.ntml %“RA

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Spark Streaming

iInput data batches of batches of
stream Spark Input data Spark processed data

Streaming Engine

Spark uses microbatches to get close to real-time performance
Intervals for batch creation can be set

http://spark.apache.org/docs/latest/streaming-programming-guide.html @MA

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Streaming data sources

« Katka

e FHume

o HDFS/S3

e KINesis

o Jwitter
 TCP socket

* Pluggable interface, write your own

Machine Learning Library (MLIib)

Common machine learning algorithms on top of Spark:

classification: SVM, naive Bayes

regression: logistic regression, decision trees, isotonic regression

clustering: K-means, PIC, LDA
collaborative ftiltering: alternating least squares

dimensionality reduction: SVD, PCA

Deployment

o Stand-alone cluster
* On cluster scheduler (YARN / Mesos)

* Local, single machine
(easy way to get started: docker-stacks)

Usage

* Interactive shell;
e spark-shell (Scala)
e pyspark (Python)
* Notebook
o Standalone application

e spark-submit <jar>/ <py>

Distributed data store

&

P
mazon |83 Sl

| cassandra
i@’lnadaap
HIES

summary

o Spark replaces MapReduce
« RDDs enable fast distributed data processing

e | earn Scala

Ntermezzo

There are only two hard things in Computer Science:
cache invalidation and naming things.

-- Phil Karlton

https://pixelastic.github.io/pokemonorbigdata/ @ARA

