
Apache Spark

28-01-2016
Jeroen Schot - jeroen.schot@surfsara.nl
Mathijs Kattenberg - mathijs.kattenberg@surfsara.nl
Machiel Jansen - machiel.jansen@surfsara.nl

mailto:jeroen.schot@surfsara.nl
mailto:mathijs.kattenberg@surfsara.nl?subject=
mailto:machiel.jansen@surfsara.nl

A Data-Parallel Approach

Restrict the programming interface so that the system can do more
automatically. Use ideas from functional programming:

“Here is a function, apply it to all of the data”

• I do not care where it runs (the system should handle that)

• Feel free to run it twice on different nodes (no side effects!)

MapReduce Programming Model
Map function: (K1, V1) —> list(K2, V2)

Reduce function: (K2, list(V2)) —> list(K3, V3)

Problems with MapReduce

• Difficulty to convert problem to MR algorithm:  
MR not expressive enough?

• Performance issues due to disk I/O between every job:  
Unsuited for iterative algorithms or interactive use

Higher Level Frameworks

Specialized systems

http://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

http://www.slideshare.net/rxin/stanford-cs347-guest-lecture-apache-spark

Solved?

• Performance issues solved only partially

• How about workflows that need multiple components?  

Enter Spark

Spark’s approach

• General purpose processing framework for DAG’s

• Fast data sharing

• Idiomatic API (if you know Scala)

Spark ecosystem

https://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

RDD properties

• Collection of objects/elements

• Spread over many machines

• Built through parallel transformations

• Immutable

RDD origins

There are two ways to create a RDD from scratch

Parallelised collections:  
distribute existing single-machine collections (List, HashMap)

Hadoop datasets:  
files from HDFS-compatible filesystem (Hadoop InputFormat)

Operations on RDDs
Transformations:
• Lazily computed
• Create new RDD
• Example: ‘map’

Actions:
• Triggers computation
• Example: ‘count’, ‘saveAsTextFile’  

An RDD from HDFS

HDFS

mary had a

little lamb

its fleece was

white as snow

RAM Host A

HDFS

and everywhere

that mary went

the lamb was

sure to go

RAM Host B

rdd.flatMap(lambda s: s.split(" "))

mary had a

little lamb

its fleece was

white as snow

RAM Host A

and everywhere

that mary went

the lamb was

sure to go

RAM Host B

mary

had

...

snow

RAM Host A

and

everywhere

...

go

RAM Host B

rdd.flatMap(lambda s: s.split(" "))

mary had a

little lamb

its fleece was

white as snow

RAM Host A

and everywhere

that mary went

the lamb was

sure to go

RAM Host B

mary

had

...

snow

RAM Host A

and

everywhere

...

go

RAM Host B

rdd.map(lambda w: (w, 1))

(mary, 1)

(had, 1)

...

(snow, 1)

RAM Host A

(and, 1)

(everywhere, 1)

...

(go, 1)

RAM Host B

(mary, 1)

(had, 1)

...

(snow, 1)

RAM Host A

(and, 1)

(everywhere, 1)

...

(go, 1)

RAM Host B

rdd.reduceByKey(lambda x, y: x + y)

(everywhere, 1)

(snow, 1)

...

(lamb, 2)

RAM Host A

(and, 1)

(mary, 2)

...

(had, 1)

RAM Host B

Transformations
RDD’s are created from other RDD’s using transformations:

map(f) => pass every element through function f

reduceByKey(f) => aggregate values with same key using f

Transformations
RDD’s are created from other RDD’s using transformations:

map(f) => pass every element through function f

reduceByKey(f) => aggregate values with same key using f

filter(f) => select elements for which function f is true

flatMap(f) => similar to map, but one-to-many

join(r) => joined dataset with RDD r

union(r) => union with RDD r

sample, intersection, distinct, groupByKey, sortByKey, cartesian…

Actions
Transformations give no output (no side-effects)
and don’t result in any real work (laziness)

Results from RDD’s via actions:

count() => return the number of elements
take(n) => select the first n elements
saveAsTextFile(file) => store dataset as file

Lineage, laziness & persistence

• Spark stores lineage information for every RDD partition

• Intermediate RDDs are computed only when needed

• By default RDDs are not retained in memory  
— use the cache/persist methods on ‘hot’ RDDs

PairRDDs

RDDs of (key, value) tuples are ‘special’

A number of transformations only for PairRDDs:

• reduceByKey, groupByKey

• join, cogroup

Spark: a general framework
Spark aims to generalize MapReduce to support new applications with a more
efficient engine, and simpler for the end users.

Write programs in terms of distributed datasets and operations on them

Accessible from multiple programming languages:

• Scala

• Java

• Python

• R (only via dataframes)

An Executing Application

Shared variables

• In general: avoid!

• When needed: read-only

• Two helpful types:  
broadcast variables, accumulators

Broadcast variables
• Wrapper around an object

• Copy send once to every worker

• Use case: lookup-table

• Should fit in the main memory of a single worker

• Can only be used read-only

Accumulators

• Special variable to which workers can only “add”

• Only the driver can read

• Similar to MapReduce counters

RDD limitations

• Reading structured data sources (schema)

• Tuple juggling 
 
([a, b, c]) => (a, [a, b, c]) => (c, [a, b, c]) etc

• Flexibility hinders optimiser

SparkSQL & DataFrames

• Inspiration from SQL & Pandas

• Columnar data representation

• Automatically reading data in Avro, CSV, JSON, .. format

• Easy conversion from/to RDD’s

DataFrame performance

https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html

https://databricks.com/blog/2015/04/24/recent-performance-improvements-in-apache-spark-sql-python-dataframes-and-more.html

Discretized Streams

http://spark.apache.org/docs/latest/streaming-programming-guide.html

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Spark Streaming

Spark uses microbatches to get close to real-time performance
Intervals for batch creation can be set

http://spark.apache.org/docs/latest/streaming-programming-guide.html

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Streaming data sources
• Kafka

• Flume

• HDFS/S3

• Kinesis

• Twitter

• TCP socket

• Pluggable interface, write your own

Machine Learning Library (MLlib)
Common machine learning algorithms on top of Spark:

• classification: SVM, naive Bayes

• regression: logistic regression, decision trees, isotonic regression

• clustering: K-means, PIC, LDA

• collaborative filtering: alternating least squares

• dimensionality reduction: SVD, PCA

Deployment

• Stand-alone cluster

• On cluster scheduler (YARN / Mesos)

• Local, single machine  
(easy way to get started: docker-stacks)

Usage
• Interactive shell:

• spark-shell (Scala)

• pyspark (Python)

• Notebook

• Standalone application

• spark-submit <jar> / <py>

Distributed data store

Summary

• Spark replaces MapReduce

• RDDs enable fast distributed data processing

• Learn Scala

Intermezzo
 There are only two hard things in Computer Science:

cache invalidation and naming things.

 -- Phil Karlton

https://pixelastic.github.io/pokemonorbigdata/

