
Scalability

28-01-2016
Mathijs Kattenberg - mathijs.kattenberg@surfsara.nl
Jeroen Schot - jeroen.schot@surfsara.nl
Machiel Jansen - machiel.jansen@surfsara.nl

mailto:mathijs.kattenberg@surfsara.nl?subject=
mailto:jeroen.schot@surfsara.nl
mailto:machiel.jansen@surfsara.nl

Bottleneck Sources

• Fundamental system/application characteristics

• Application design

• Human effort/involvement

Fundamental Bottlenecks
• Machine limits

• Latencies

• Sequential versus random processing

• Machine/network failures

• Algorithm characteristics

Machine Limits
Current system limits:

• ~128 CPU cores

• 2TB of RAM

• ~500 TB disk space

= expensive (cost does not scale linearly)

http://bit.ly/1aGoF5l

Latencies

http://bit.ly/1aGoF5l

Sequential vs Random

Courtesy Ben Stopford: http://bit.ly/1JNyBtx

Failures
Backblaze cloud storage:

• ~ 46K disks

• http://bit.ly/1V5Gbq7

http://bit.ly/1V5Gbq7

Algorithm Characteristics
Fine grained, coarse grained, embarrassingly (data) parallel:

Algorithm Characteristics
mutable state + parallel processing = non-determinism

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
em

or
y

Different programming models

Different programming constructs
mutexes, conditional variables, barriers, …
masters/slaves, producers/consumers, work queues, …

scheduling, data distribution, synchronization,
inter-process communication, robustness, fault
tolerance, …

Common problems
livelock, deadlock, data starvation, priority inversion…
dining philosophers, sleeping barbers, cigarette smokers, …

Flynn’s taxonomy (SIMD, MIMD, etc.),
network typology, bisection bandwidth
UMA vs. NUMA, cache coherence

Programmer shoulders the burden of managing concurrency…

master

slaves

producer consumer

producer consumer

work
queue

Scalability: Design

• Data is growing faster than computing power and IO 
 
=> distributed computing necessary

• Most standard applications cannot run in a distributed fashion  
 
=> Applications need to be designed with scalability from the start

Scalability: Design

Idea: take a step back and consider:

• Work without mutable state

• Restrict the programming interface so that more can be done
automatically.

Turns out: we can use ideas from functional programming

Functional Programming

Restrict the programming interface so that the system can do more
automatically. Use ideas from functional programming:

“Here is a function, apply it to all of the data”

• I do not care where it runs (the system should handle that)

• Feel free to run it twice on different nodes (no side effects!)

Google: How to program this?

A Data-Parallel Approach

MapReduce

MapReduce Programming Model
Map function: (K1, V1) —> list(K2, V2)

Reduce function: (K2, list(V2)) —> list(K3, V3)

Combiner advantages

Shuffle and Sort

YARN: an Executing Application

Hadoop at SURFsara
Hathi cluster:

• 197 nodes, 8 cores, 64GB RAM

• 1576 container slots

• 4 x {2,4} TB disks: ~ 2.3PB HDFS

• Hortonworks HDP 2.3 (Hadoop 2.7.1)

• Kerberos authentication

• YARN for {MapReduce, Spark, … }

Hands-on: Notebooks
Jupyter notebooks:

• Browse to: http://hadws{1..28}.demouva.vm.surfsara.nl:8888

• e.g.: http://hadws1.demouva.vm.surfsara.nl:8888

• Password: spark@uvahpc

http://hadws
http://demouva.vm.surfsara.nl
http://hadws1.demouva.vm.surfsara.nl:8888

