UVA HPC & BIG DATA COURSE

INTRODUCTORY LECTURES

Adam Belloum

Introduction to Parallel programming
distributed systems

Parallel programming MPIl/openMP/RMI ...
Service Oriented Architecture and Web Service
Grid computing

Cloud Computing

Workflow

Discussions

BigData

General introduction to BigData
MapReduce and Beyond
Analytics of BigData

Technology for Big Data

If you know these concepts you are

attending the wrong class ...

Supercomputing / High Performance Computing (HPC)
Node

CPU / Socket / Processor / Core
Task

Pipelining

Shared Memory

Symmetric Multi-Processor (SMP)
Distributed Memory
Communications

Synchronization

Granularity

Observed Speedup

Parallel Overhead

Massively Parallel

Embarrassingly Parallel

Scalability

Content

Computer Architectures
High Performance Computing (HPC)
Speed up

Parallel programming models

Computer Architecture

* supercomputers use many CPUs to do the work
* All supercomputing architectures have

— processors and some combination cache

— some form of memory and input/ouput 10O

— the processors are separated from every other
processors by some distance

* there are major differences in the way these parts
are connected

some scientific problems fit better some architectures
better than others

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Supercomputer - each blue
light is a node

Node - standalone
VVon Neumann computer

CPU / Processor / Socket - each
has multiple cores / processors.

Memory Comtroller

How CPU works http://www.youtube.com/watch?v=cNN_tTXABUA

How Computers Add Numbers In One Lesson:
http://www.youtube.com/watch?v=VBDoT804q00&feature=fvwp
Computer Architecture Lesson 1: Bits and Bytes
http://www.youtube.com/watch?v=UmSelKbP4sc

Computer Architecture Lesson 2: Memory addresses
http://www.youtube.com/watch?v=yF_txERujps&NR=1&feature=episodic
Richard Feynman Computer Heuristics Lecture
http://www.youtube.com/watch?v=EKWGGDXe5MA

Architectures: Michael |. Flynn (1972)

* Flynn’s taxonomy distinguish multi-processor
computer according to independent dimensions

— Instruction
— Data

e Fach dimension SISD SIMD

Single Instruction, Single Data | Single Instruction, Multiple Data

— Single

— Multiple MISD
Multiple Instruction, Single Data

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Parallel Computer Memory
Architectures

* we can also classify supercomputers according
to how the processors and memory are
connected

— couple of processors to a single large memory
address space

— couple of computers, each with its own memory

address space

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Parallel Computer Memory
Architectures

Shared Memory
* Uniform Memory Access (UMA)
* Non-Uniform Memory Access (NUMA

Distributed Memory Multiprocessor -

 Processors have their own local
memory

* (Changes it makes to its local
memory have no effect on the
memory of other processors.

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Parallel Computer Memory
Architectures

Shared Memory
* Uniform Memory Access (UMA)
* Non-Uniform Memory Access (NUMA)

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Parallel Computer Memory
Architectures

Distributed Memory Multiprocessor
* Processors have their own local memory

* (Changes it makes to its local memory have no effect on
the memory of other processors.

|| Bus Interconnect ||

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

High Performance Computing

* Increasing computing power available allows
— Iincreasing the problem dimensions
— adding more particles to a system
— Increasing the accuracy of the result

— Improve experiment turnaround time

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Why Use supercomputers?

Solve larger problems
Use of non-local resources
Provide concurrency

Save time and/or money

DreamWorks Presents the Power of Supercomputing
http://www.youtube.com/watch?

v=TGSRvV9u32M&feature=fvwp

https://computing.linl.gov/tutorials/parallel_comp/

High Performance Computing

* What does High-Performance Computing (HPC)
mean?

— High-performance computing (HPC) is the use of super
computers and parallel processing techniques for solving
complex computational problems.

— HPC technology focuses on developing parallel processing
systems by incorporating both administration and
parallel computational technigues.

The terms high-performance computing and
supercomputing are sometimes used interchangeably.

http://www.techopedia.com/definition/4595/high-performance-computing-hpc

Content

* Speed up
* Parallel programming models

* Example of Parallel programs

Speedup

—How can we measure how much faster our
brogram runs when using more than one
DroCcessor?

Define Speedup S as:

— the ratio of 2 program execution times

— constant problem size

* T, Is the execution time for the problem on a single
processor (use the “best” serial time)

* Tp is the execution time for the problem on P processors

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup

Linear speedup Speedup
Sublinear speedup

Superlinear speedup

L PR P

why do a speedup test!

Speedup: S

Number of CPUs
Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup: Limit of Parallel programming

* A program always has a sequential part and a parallel part

(1) A=B+C;
(2) D=A+1;

(3) E£D+A;

(4) For (1=0; I<E: I++)
(5) M(I)=0;

* the best you can do is to sequentially execute 4 instructions
no mater how many processors you get

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Speedup: Implication

* Parallel programming is great for programs with
a lot of parallelism
— Jacob, scientific applications (weather prediction,
DNA sequencing, etc)
* Parallel programming may not be that great

some traditional applications:
* Computing Fibonacci series F(K+2)=F(k+1) + F(k)

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Speedup: Amdahl’s Law (1967)

* Amdahl's Law states that potential program
speedup Is defined by the fraction of code (P)
that can be parallelized:

—_
o

— speedup = -

|
Speedup
o —_ [%] (¥} EoN [,] [=3] - (=] o

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Parallel Portion of Code

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Speedup: Amdahl’s Law (1967)

* Introducing the number of processors
performing the parallel fraction of work; the
relationship can be modeled by:

| T T R
Parallel Portion
%
oo 7
| % | i |
RN

— speedup =

Jon Johansson Academic ICT Copyright © 2006 University of Alberta

Content

ow to design Parallel programs

Parallel programming models

—xample of Parallel programs

Design Parallel programs

* Domain decomposition and functional
decomposition
— Domain decomposition: DATA associate with a

problem i1s decomposed.
* Each parallel task then works on a portion of data

— Functional deposition: focus on the computation
that Is be performed. The problem is decomposed
according to the work that must be done.

* Each task then performs a portion of the overall work

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Domain decomposition:

* Also Called data parallelism

Problem Data Set

e DATA associate with a

problem Is decomposed. i I ‘
* Fach parallel task then work

task 0 task 1 task 2 task 3

on a portion of data

* Example: MapReduce

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Domain decomposition methods:

» Same datum may be needed by Domain deposition methods
multiple tasks

- o U
* Decompose the data in such a

1D
20
manner that the required
communication is minimized : :‘
* Ensure that the computational F
loads on processes are balanced E |-|-I_I_| ﬁ

cycLic,” *, CYCLIC CYCLIC, CYCLIC

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data parallelism

Hierarchical work distribution

To solve this problem we designed a
hierarchical work distribution
algorithm that reclursively splits
the world into blocks (top-down).

Example:

Split each result into 32 (nodes)
Split each result into 16 (cores)

Maximize load balance and
minimize communication at each
level!

Source: A

istributed Approach to Improve the Performance of the Parallel Ocean Program
Ben van Werkhoven et al., Geoscientific Model Development, 7, 257-281, 2014

netherlands ‘ 2 r _
SIOENT: center //Ill Eji.‘d %w

Jason Maassen

Functional deposition

* the focus is on the
computation that is to be
performed rather than on the
data manipulated by the
computation.

Problem Instruction Set

* The problem is decomposed
according to the work that
must be done.

* Each task then performs a
portion of the overall work.

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

CESM model coupling

Data dependencies
allow some models
to run concurrently,
while others must
run in sequence.

(balancing their run times
is black magic)

nnnnnn

sea ice

atmosphere

atmosphere

sea ice

sea ice

sea ice

atmosphere
atmosphere

>

TIME

CORES

Atmosphere, land and sea ice exchange data every
30 model minutes, but ocean only 1x to 4x each model day!

ZLLBLY:

Jason Maassen

\ 4

Data Dependence

* A dependence exists between programs when the order of
statement execution affects the results of the program.

* A data dependence results from multiple use of the same
location(s) in storage by different tasks.

(task 1) — (task2)
— True dependence: Write X — Read X
— Output dependence: Write X —Write X
— Anti dependence: Read X —Write X

Dependencies: are important to parallel programming because
the are one of the inhibitors to parallelism.

http://www.docstoc.com/docs/2698537/Introduction-to-Parallel-Programming

Data Dependence

* The value of a(l-1) must
be computed before the
value of a(l)

Data dependency examples

Fe k=0, 1500, 144) | [For 1=0:Je500; +4)
al)=0; al)=a(l-1)+1;

* A(l) exhibits a data
dependency on a(l-1).

 Parallelism is inhibrted.

Load balancing

* Distribute the computation/communication
such that all the processor are busy all the time.

* At a synchronization point, the worst case
performance Is the real performance

Communications

* Parallel applications that do not need
communications are called embarrassingly
parallel programs
— Monte carlo method, Seti at home
— Most programs (e.g. Jacobl) are not like that

— Communication is inherent to explort parallelism in
a program

Communications

* Factors to consider:
— Cost of the communication
— Latency and bandwidth
— Synchronous and asynchronous

— Point to point or collective

Overlapping communication and
computation

* Make processors busy when waiting for
communication results

— Usually achieved by using non-blocking
communicating primrtives

Loading balancing, minimizing communication and
overlapping communication with computation
are keys to develop efficient parallel applications

Some basic load balancing techniques

* Equally partition the work each task receives

— For array/matrix operations where each task performs
similar work, evenly distribute the data set among the tasks.

— For loop Iiterations where the work done In each rteration
s similar; evenly distribute the iterations across the tasks.
* Use dynamic work assignment
— Sparse arrays
— Adaptive grid method

— If a heterogeneous mix of machines with varying
performance
—> scheduler - task pool approach

Granularity

* Computation/ Communication

— In parallel programming, granularity is a qualitative
measure of the ratio of the computation to
communication.

— Periods of computation are typically separated form
periods of communication by synchronization events
* Computation phase and communication phase

Granularity

aw}

* Fine-grain parallelism
— Relatively small amount of computational work are done
between communication events

Low computation to communication ratio Implies high

commutation over head and less opportunity for
performance enhancement

* Coarse-grain parallelism
— Relatively large amounts of computation work are done
between communication/synchronization events

awn

High computation to communication ratio Implies more
opportunity for performance increase Harder to load
balance efficiently

Y

| communicatio
I computation

Deadlock/Livelock

* Deadlock appears when two or more
Drograms are walting and none can make

PDIrogress

* Livelock results from indefinite loop.

content

* Parallel programming models

* Example of Parallel programs

Parallel Programming models

Data Parallelism/task parallelism
* Shared Memory (without threads/Threads)
* Distributed Memory / Message Passing

High level programming models
* Single Program Multiple Data (SPMD)
* Multiple Program Multiple Data (MPMD)

https://computing.linl.gov/tutorials/parallel comp/#ModelsOverview

Parallel programming

need to do something to your program to use
multiple processors

need to Incorporate commands into your
program which allow multiple threads to run

— one thread per processor

— each thread gets a piece of the work

several ways (APls) to do this ...

Parallel programming

Basic Message Passing

Processor A Processor B
Message Passing Interface (MPI) — e
network
* Interprocess communication | G AT i:
which have separate address endit) et

spaces

What 1s message passing?

« Data is explicitly sent by one
process and received by

+ Data transfer plus synchronization

] May | Send?

another -
— Data transfer usually requires cooperative -
operations to be performed by each
pro cess. + Requires cooperation of sender and receiver

. « Cooperation not always apparent in code)
— For example, a send operation must have a

matching receive operation

Parallel programming

Basic Message Passing
. Processor A Processor B
Message Passing Interface (MPI)
memory memory
network
+ What is MPI I |k
— A message-Passing Library specification sed(dat2) receive(data)

— Not a language or compiler specification

— Not a specific implementation or product , ,
What 1s message passing?

+ Data transfer plus synchronization

Data | ey 1 5ena? f%
Process 1 Yes

— Designed to provide access to advanced parallel -
hardware for:

* For parallel computers, clusters, and
heterogeneous networks.

. . * Requires cooperation of sender and receiver
® Eﬂd users, |IbI”aI”>/ Wr‘l'teI”S, tOO|S deve|0per8 « Cooperation not always apparent in code

Parallel programming

Basic Message Passing
. Processor A Processor B
Message Passing Interface (MPI)
memory memory
network
* Why use MPR N |
send(data) receive(data)

— Optimized for performance
— Will take advantage of fastest transport found | |
« Shared memory (within a computer) Whatis message passing!

. oo + Data transfer plus synchronization
» Fast cluster interconnects (Infiniband,
Myrinet..) between computers (nodes)

« TCP/IP if all else fails

+ Requires cooperation of sender and receiver
+ Cooperation not always apparent in code

Parallel programming

Basic Message Passing
. Processor A Processor B
Message Passing Interface (MPI)
memory memory
network
Deadlocks? [
* Send a large message from proc A to proc B senddaa) receive(data)

— If there is insufficient storage at the destination, the
send must wait for the user to provide the

. What 1s message passing?
memory space (through a receive)

+ Data transfer plus synchronization

May | Send?

* What will happen! (unsafe)

— Process 0 Process | Ny
Send(1) Send(0)
+ Requires cooperation of sender and receiver
Recv(|) Recv(O) « Cooperation not always apparent in code

Parallel programming

Basic Message Passing

Processor A Processor B

Message Passing Interface (MPI)

memory memory
network

Lo gl o

send(data) receive(data)

« Very good for distributing large computations

across reliable network
What 1s message passing?

+ Data transfer plus synchronization

May | Send?

« Would be terrible for a distributed internet chat

client or BitTorrent server S

+ Requires cooperation of sender and receiver
« Cooperation not always apparent in code

Example MPI| Hello World

#include <mpi.h>;

int main(int argc, char** argv) ({

o= . - ——

// Print off a hello world message
printf("Hello world from processor

);

>>> export MPIRUN=/home/kendall/bin/mpirun

>>> export MPI_HOSTS=host_file
>>> ./run.perl mpi_hello_world
/home/kendall/bin/mpirun -n 4 -f host_file ./mpi_hello_world

Hello world from
Hello world from
Hello world from
Hello world from

processor
processor
processor
processor

cetus2, rank 1
cetusl, rank 0@
cetus4, rank 3
cetus3, rank 2

out
out
out
out

of 4 processors
of 4 processors
of 4 processors
of 4 processors

Threads

* threads model of parallel
programming, a single

process can have multiple,

concurrent execution
paths

 Fach thread has local data,

but also, shares the entire
resources of executable

a.out.

* Threads communicate
with each other through
global memory

instructions

_
-«

core core

core core

Il

MEMORY

aw)

Parallel programming

Open MultiProcessing (OpenMP)
* What is OpenMP?

— 15 a library that supports parallel
programming in shared-memory parallel
machines.

— allows for the parallel execution of
code (parallel DO loop), the definition
of shared data (SHARED), and
synchronization of processes

Parallel programming

* What is the programming model!

* Open MultiProcessing (OpenMP) \
o
— All threads have access to the same,
@

globally shared, memory
— Data can be shared or private
* Shared data is accessible by all threads

* Private data can be accessed only by the
threads that owns it

Data transfer is transparent to the programmer
Synchronization takes place, but it is mostly implicit

Parallel programming

Open MultiProcessing (OpenMP)

OpenMP language

extensions
runtime
parallel control : data . .
work sharing . synchronization functions, env.
structures environment :
variables

governs flow of
control in the
program

parallel directive

distributes work
among threads

do/parallel do
and
section directives

scopes
variables

shared and
private
clauses

coordinates thread
execution

critical and
atomic directives
barrier directive

runtime environment

omp_set_num_threads()
omp_get_thread_num()

OMP_NUM_THREADS
OMP_SCHEDULE

Example OpenMP Hello World

finclude <omp.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv([]) {

$ icc -o omp_helloc -openmp omp_hello.c

omp_hello.c(22): (col. 1) remark: OpenMP DEFINED REGION WAS PARALLELIZED.
$ export OMP_NUM_THREADS=3

$./omp_helloc

Hello World from thread
Hello World from thread
Hello World from thread

Number of threads = 3
o

0
2
1

nwonon

printf("Number of threads ' “);

Parallel programming

Pros/Cons of OpenMP

N N N NN

A\

easier to program and debug than MP!

directives can be added incrementally -
gradual parallelization

can still run the program as a serial code

serial code statements usually don't need
modification

code is easier to understand and maybe
more easily maintained

can only be run in shared memory
computers

requires a compiler that supports
OpenMP

mostly used for loop parallelization

Pros/Cons of MPI

v" runs on either shared or distributed
memory architectures

can be used on a wider range of
problems than OpenMP

each process has its own local variables

distributed memory computers are less
expensive than large shared memory
computers

AN NN

A\

requires more programming changes to
go from serial to parallel version

» can be harder to debug

» performance is limited by the
communication network between the
nodes

Parallel programming

Shared State Models

Views an application as a collection of
processes communicating by putting/
getting objects into one or more
spaces

Linda
client
Linda server

A space Is a shared and persistent
object repository that is accessible via \

Linda
c¢lient
network
Linda Linda
c¢lient c¢lient

The processes use the repository as
an exchange mechanism to get

coordinated, instead of communicating
directly with each other

implementation: Java (JavaSpaces), Lisp, Prolog, Python, Ruby, and the .NET framework

Parallel programming

Shared State Models: Publish/
Subscribe

« Publish/subscribe systems
are programming capability
provided by associative
matching

« Allows the producers and
consumers of data to
coordinate in a way where
they can be decoupled and
may not even know each
other’ s identity

— SOA, Web service efc.

Parallel programming

RPC and RMI Models

« Structure the interaction Machine A Networi
between sender and cters servco
receiver as: J'

— alanguage construct, rather callpel)
than a library function call that mvok;‘

simply transfers an un-
interpreted data. Call service

e provide a simple and well .
understood mechanism for e [
managing remote
computations f retum

Program
continues

content

* Example of Parallel programs

calculations on 2-dimensional array
elements

* [he serial program calculates one element at a
time In sequential order.

e Serial code could be of the form:

do j 1,
do i 1,

nes s

a(i,j) = fen(i,j) |

end do i

end do

|fcn(i j)|

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array

elements: solution |

* Implement as a Single Program Multiple Data

(SPMD) model.

* each task executes the portion of the loop

corresponding to the data it owns.

do j = mystart, myend
do i =1,n

a(i,j) = fen(i,3)
end do
end do

Ifm(i j)|

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: implementation

* Implement as a Single Program Multiple Data
(SPMD) model.

* Master process initializes array, sends info to
worker processes and recelves results.

* Worker process receives info, performs its share
of computation and sends results to master.

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: implementation

find out if I am MASTER or WORKER

if I am MASTER
initialize the array
send each WORKER info on part of array it owns
send each WORKER its portion of initial array
receive from each WORKER results

else if I am WORKER
receive from MASTER info on part of array I own

receive from MASTER my portion of initial array

calculate my portion of array

do j = my first column,my last column
do i = 1,n
a(i,j) = fen(4i,3)
end do
end do

send MASTER results

endif

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: solution 2

* Solution|: demonstrated static load balancing:
— EFach task has a fixed amount of work to do

— May be significant idle time for faster or more lightly
oaded processors - slowest tasks determines overall
performance.

* |f you have a load balance problem (some tasks
work faster than others),

— you may benefit by using a "pool of tasks" scheme.

https://computing.linl.gov/tutorials/parallel_comp/#MemoryArch

calculations on 2-dimensional array
elements: solution 2

* Master Process:
— Holds pool of tasks for worker processes to do
— Sends worker a task when requested

— Collects results from workers

* Worker Process: repeatedly does the following
— Gets task from master process
— Performs computation

— Sends results to master

calculations on 2-dimensional array
elements: solution 2

find out if I am MASTER or WORKER
if I am MASTER
do until no more jobs
if request send to WORKER next job
else receive results from WORKER
end do

else if I am WORKER

do until no more jobs
request job from MASTER
receive from MASTER next job

calculate array element: a(i,j) = fcn(i,j)

send results to MASTER
end do

endif

References

Introduction to Parallel Computing
https://computing.linl.gov/tutorials/parallel_comp/
#MemoryArch

Intro to Parallel Programming . Lesson 2, pt. |- Shared Memory
and threads http://www.youtube.com/watch!v=6sL.4C25wszM
Intro to Parallel Programming . Lesson 2, pt. 2- Shared Memory
and threads http://www.youtube.com/watch!v=ydG8cOz||LA

Intro to Parallel Programming . Lesson 2, pt. 3- Shared Memory

and threads
http://www.youtube.com/watch?v=403[WbrA5oU

TODO (for Students)

Intro to distributed sys & (Adam Belloum, UvA) Lectures/6 hours
BigData

* Foster et al. "Cloud Computing and Grid Computing 360-
Degree Compared,” Grid Computing Environments Workshop,
2008. GCE '08 , vol,, no, pp.1,10, 12-16 Nov. 2008 doi: 10.1109/

GCE.2008.4738445

* Adam Jacobs “The pathologies of big data”, Magazine
Communications of the ACM ,Vol. 52 Issue 8, Aug. 2009. doi:
10.1145/1536616.1536632

