
UVA HPC & BIG DATA COURSE

INTRODUCTORY LECTURES
Adam Belloum

Introduction to Parallel programming
distributed systems

•  Parallel programming MPI/openMP/RMI …
•  Service Oriented Architecture and Web Service
•  Grid computing
•  Cloud Computing
•  Workflow
•  Discussions

	

BigData

•  General introduction to BigData
•  MapReduce and Beyond
•  Analytics of BigData
•  Technology for Big Data

If you know these concepts you are
attending the wrong class …

•  Supercomputing / High Performance Computing (HPC)
•  Node
•  CPU / Socket / Processor / Core
•  Task
•  Pipelining
•  Shared Memory
•  Symmetric Multi-Processor (SMP)
•  Distributed Memory
•  Communications
•  Synchronization
•  Granularity
•  Observed Speedup
•  Parallel Overhead
•  Massively Parallel
•  Embarrassingly Parallel
•  Scalability

Content

•  Computer Architectures
•  High Performance Computing (HPC)
•  Speed up
•  Parallel programming models

Computer Architecture

•  supercomputers use many CPUs to do the work
•  All supercomputing architectures have

–  processors and some combination cache
–  some form of memory and input/ouput IO
–  the processors are separated from every other

processors by some distance

•  there are major differences in the way these parts
are connected

some scientific problems fit better some architectures
better than others

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

•  How	CPU	works	hCp://www.youtube.com/watch?v=cNN_tTXABUA	
•  How	Computers	Add	Numbers	In	One	Lesson:	
hCp://www.youtube.com/watch?v=VBDoT8o4q00&feature=fvwp		

•  Computer	Architecture	Lesson	1:	Bits	and	Bytes
hCp://www.youtube.com/watch?v=UmSelKbP4sc		

•  Computer	Architecture	Lesson	2:	Memory	addresses	
hCp://www.youtube.com/watch?v=yF_txERujps&NR=1&feature=episodic	

•  Richard	Feynman	Computer	Heuris_cs	Lecture	
				hCp://www.youtube.com/watch?v=EKWGGDXe5MA			

Architectures: Michael J. Flynn (1972)

•  Flynn’s taxonomy distinguish multi-processor
computer according to independent dimensions
–  Instruction
– Data

•  Each dimension
– Single
– Multiple

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Parallel Computer Memory
Architectures

•  we can also classify supercomputers according
to how the processors and memory are
connected

– couple of processors to a single large memory
address space

– couple of computers, each with its own memory
 address space

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Parallel Computer Memory
Architectures

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Shared Memory
•  Uniform Memory Access (UMA)
•  Non-Uniform Memory Access (NUMA)

Distributed Memory Multiprocessor
•  Processors have their own local

memory
•  Changes it makes to its local

memory have no effect on the
memory of other processors.

Parallel Computer Memory
Architectures

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Shared Memory
•  Uniform Memory Access (UMA)
•  Non-Uniform Memory Access (NUMA)

Parallel Computer Memory
Architectures

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Distributed Memory Multiprocessor
•  Processors have their own local memory
•  Changes it makes to its local memory have no effect on

the memory of other processors.

High Performance Computing

•  increasing computing power available allows
–  increasing the problem dimensions
– adding more particles to a system
–  increasing the accuracy of the result
–  improve experiment turnaround time
– …

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Why Use supercomputers?

•  Solve larger problems
•  Use of non-local resources
•  Provide concurrency
•  Save time and/or money

hCps://compu_ng.llnl.gov/tutorials/parallel_comp/	

DreamWorks	Presents	the	Power	of	Supercompu5ng	
hCp://www.youtube.com/watch?
v=TGSRvV9u32M&feature=fvwp		

High Performance Computing

•  What does High-Performance Computing (HPC)
mean?
– High-performance computing (HPC) is the use of super

computers and parallel processing techniques for solving
complex computational problems.

– HPC technology focuses on developing parallel processing
systems by incorporating both administration and
parallel computational techniques. �
�
The terms high-performance computing and
supercomputing are sometimes used interchangeably.

hCp://www.techopedia.com/defini_on/4595/high-performance-compu_ng-hpc	

Content

•  High Performance Computing
•  Computer Architectures
•  Speed up
•  Parallel programming models
•  Example of Parallel programs

Speedup

•  How can we measure how much faster our
program runs when using more than one
processor?

•  Define Speedup S as:
–  the ratio of 2 program execution times
–  constant problem size

•  T1 is the execution time for the problem on a single
processor (use the “best” serial time)

•  TP is the execution time for the problem on P processors

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Sp
ee
du

p:
	S
=T
1/
Tp
	

			
			
5	
			
			
10

			
			
15

			
		2
0	
			
		2
5	
			
		3
0	
			
	3
5	

1						5							10						15					20						25					30					35															
Number	of	CPUs	

Linear	

Super-Linear	

Sub-Linear	

Speedup

•  Linear speedup
•  Sublinear speedup
•  Superlinear speedup

•  why do a speedup test?

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Linear	

Strange	

Speedup: Limit of Parallel programming

•  A program always has a sequential part and a parallel part

•  the best you can do is to sequentially execute 4 instructions
no mater how many processors you get

hCp://www.docstoc.com/docs/2698537/Introduc_on-to-Parallel-Programming	

Speedup: Implication

•  Parallel programming is great for programs with
a lot of parallelism
–  Jacobi, scientific applications (weather prediction,

DNA sequencing, etc)
•  Parallel programming may not be that great

some traditional applications:
•  Computing Fibonacci series F(K+2)=F(k+1) + F(k)

hCp://www.docstoc.com/docs/2698537/Introduc_on-to-Parallel-Programming	

Speedup: Amdahl’s Law (1967)

•  Amdahl's Law states that potential program
speedup is defined by the fraction of code (P)
that can be parallelized:
 1
–  speedup = --------
 1 - P

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Speedup: Amdahl’s Law (1967)

•  Introducing the number of processors
performing the parallel fraction of work, the
relationship can be modeled by:
 1
–  speedup = --------
 P + S

 N

Jon	Johansson	Academic	ICT	Copyright	©	2006	University	of	Alberta	

Content

•  High Performance Computing
•  Computer Architectures
•  Speed up
•  How to design Parallel programs
•  Parallel programming models
•  Example of Parallel programs

Design Parallel programs

•  Domain decomposition and functional
decomposition
– Domain decomposition: DATA associate with a

problem is decomposed.
•  Each parallel task then works on a portion of data

– Functional deposition: focus on the computation
that is be performed. The problem is decomposed
according to the work that must be done.

•  Each task then performs a portion of the overall work

hCp://www.docstoc.com/docs/2698537/Introduc_on-to-Parallel-Programming	

Data parallelism

Domain decomposition:
•  Also Called data parallelism

•  DATA associate with a
problem is decomposed.

•  Each parallel task then works
on a portion of data

•  Example: MapReduce

hCp://www.docstoc.com/docs/2698537/Introduc_on-to-Parallel-Programming	

Data parallelism

Domain decomposition methods:
•  Same datum may be needed by

multiple tasks

•  Decompose the data in such a
manner that the required
communication is minimized

•  Ensure that the computational
loads on processes are balanced

hCp://www.docstoc.com/docs/2698537/Introduc_on-to-Parallel-Programming	

Data parallelism

Jason	Maassen	

Functional deposition

•  the focus is on the
computation that is to be
performed rather than on the
data manipulated by the
computation.

•  The problem is decomposed
according to the work that
must be done.

•  Each task then performs a
portion of the overall work.

hCp://www.docstoc.com/docs/2698537/Introduc_on-to-Parallel-Programming	

Jason	Maassen	

Data Dependence
•  A dependence exists between programs when the order of

statement execution affects the results of the program.

•  A data dependence results from multiple use of the same
location(s) in storage by different tasks.

 (task 1) – (task2)
–  True dependence: Write X – Read X
–  Output dependence: Write X – Write X
–  Anti dependence: Read X – Write X

Dependencies: are important to parallel programming because
the are one of the inhibitors to parallelism.

hCp://www.docstoc.com/docs/2698537/Introduc_on-to-Parallel-Programming	

Data Dependence

•  The value of a(I-1) must
be computed before the
value of a(I)

•  A(I) exhibits a data
dependency on a(I-1).

•  Parallelism is inhibited.

Load balancing

•  Distribute the computation/communication
such that all the processor are busy all the time.

•  At a synchronization point, the worst case
performance is the real performance

Communications

•  Parallel applications that do not need
communications are called embarrassingly
parallel programs
– Monte carlo method, Seti at home
– Most programs (e.g. Jacobi) are not like that
– Communication is inherent to exploit parallelism in

a program

Communications

•  Factors to consider :
– Cost of the communication
– Latency and bandwidth
– Synchronous and asynchronous
– Point to point or collective

.	

Overlapping communication and
computation

•  Make processors busy when waiting for
communication results
– Usually achieved by using non-blocking

communicating primitives

Loading balancing, minimizing communication and
overlapping communication with computation

are keys to develop efficient parallel applications

Some basic load balancing techniques

• Equally partition the work each task receives
–  For array/matrix operations where each task performs

similar work, evenly distribute the data set among the tasks.
–  For loop iterations where the work done in each iteration

is similar, evenly distribute the iterations across the tasks.
•  Use dynamic work assignment

–  Sparse arrays
–  Adaptive grid method
–  If a heterogeneous mix of machines with varying

performance
à scheduler - task pool approach

pragma omp parallel
For (I=0;I<N;I++){
…
}

Granularity

•  Computation/ Communication
–  In parallel programming, granularity is a qualitative

measure of the ratio of the computation to
communication.

– Periods of computation are typically separated form
periods of communication by synchronization events

•  Computation phase and communication phase

Granularity
•  Fine-grain parallelism

–  Relatively small amount of computational work are done
between communication events

Low computation to communication ratio Implies high
commutation over head and less opportunity for

performance enhancement

•  Coarse-grain parallelism
–  Relatively large amounts of computation work are done

between communication/synchronization events

High computation to communication ratio Implies more
opportunity for performance increase Harder to load

balance efficiently

Deadlock/Livelock

•  Deadlock appears when two or more
programs are waiting and none can make
progress

•  Livelock results from indefinite loop.

content

•  High Performance Computing
•  Computer Architectures
•  Speed up
•  How to design parallel applications
•  Parallel programming models
•  Example of Parallel programs

Parallel Programming models

Data Parallelism/task parallelism
•  Shared Memory (without threads/Threads)
•  Distributed Memory / Message Passing

High level programming models
•  Single Program Multiple Data (SPMD)
•  Multiple Program Multiple Data (MPMD)

hCps://compu_ng.llnl.gov/tutorials/parallel_comp/#ModelsOverview		

Parallel programming

•  need to do something to your program to use
multiple processors

•  need to incorporate commands into your
program which allow multiple threads to run
– one thread per processor
– each thread gets a piece of the work

•  several ways (APIs) to do this …

Parallel programming

 Message Passing Interface (MPI)

•  Interprocess communication
which have separate address
spaces

•  Data is explicitly sent by one
process and received by
another
–  Data transfer usually requires cooperative

operations to be performed by each
process.

–  For example, a send operation must have a
matching receive operation

Parallel programming

 Message Passing Interface (MPI)

•  What is MPI?
–  A message-Passing Library specification
–  Not a language or compiler specification
–  Not a specific implementation or product

•  For parallel computers, clusters, and
heterogeneous networks.
–  Designed to provide access to advanced parallel

hardware for :
•  End users, library writers, tools developers

Parallel programming

 Message Passing Interface (MPI)
•  Why use MPI?

–  Optimized for performance
–  Will take advantage of fastest transport found

•  Shared memory (within a computer)
•  Fast cluster interconnects (Infiniband,

Myrinet..) between computers (nodes)
•  TCP/IP if all else fails

Parallel programming

 Message Passing Interface (MPI)

Deadlocks?
•  Send a large message from proc A to proc B

–  If there is insufficient storage at the destination, the
send must wait for the user to provide the
memory space (through a receive)

•  What will happen? (unsafe)
–  Process 0 Process 1

Send(1) Send(0)
Recv(1) Recv(0)

Parallel programming

 Message Passing Interface (MPI)

•  Very good for distributing large computations

across reliable network

•  Would be terrible for a distributed internet chat

client or BitTorrent server

Example MPI Hello World

);	

Threads

•  threads model of parallel
programming, a single
process can have multiple,
concurrent execution
paths

•  Each thread has local data,
but also, shares the entire
resources of executable
a.out.

•  Threads communicate
with each other through
global memory

Parallel programming

 Open MultiProcessing (OpenMP)

•  What is OpenMP?
–  is a library that supports parallel

programming in shared-memory parallel
machines.

–  allows for the parallel execution of
code (parallel DO loop), the definition
of shared data (SHARED), and
synchronization of processes

Parallel programming

•  What is the programming model?
–  All threads have access to the same,

globally shared, memory
–  Data can be shared or private

•  Shared data is accessible by all threads
•  Private data can be accessed only by the

threads that owns it

•  Open MultiProcessing (OpenMP)

Data	transfer	is	transparent	to	the	programmer	
	Synchroniza5on	takes	place,	but	it	is	mostly	implicit	

Parallel programming

Open MultiProcessing (OpenMP)

Example OpenMP Hello World

“);	

Parallel programming

Pros/Cons of OpenMP
ü  easier to program and debug than MPI
ü  directives can be added incrementally -

gradual parallelization
ü  can still run the program as a serial code
ü  serial code statements usually don't need

modification
ü  code is easier to understand and maybe

more easily maintained

Ø  can only be run in shared memory
computers

Ø  requires a compiler that supports
OpenMP

Ø  mostly used for loop parallelization

Pros/Cons of MPI
ü  runs on either shared or distributed

memory architectures
ü  can be used on a wider range of

problems than OpenMP
ü  each process has its own local variables
ü  distributed memory computers are less

expensive than large shared memory
computers

Ø  requires more programming changes to
go from serial to parallel version

Ø  can be harder to debug
Ø  performance is limited by the

communication network between the
nodes

Parallel programming

Shared State Models
•  Views an application as a collection of

processes communicating by putting/
getting objects into one or more
spaces

•  A space is a shared and persistent
object repository that is accessible via
network

•  The processes use the repository as
an exchange mechanism to get
coordinated, instead of communicating
directly with each other

	implementa_on:	Java	(JavaSpaces),	Lisp,	Prolog,	Python,	Ruby,	and	the	.NET	framework	

Parallel programming

Shared State Models: Publish/
Subscribe
•  Publish/subscribe systems

are programming capability
provided by associative
matching

•  Allows the producers and
consumers of data to
coordinate in a way where
they can be decoupled and
may not even know each
other’s identity

–  SOA, Web service etc.

Parallel programming

RPC and RMI Models
•  Structure the interaction

between sender and
receiver as:
–  a language construct, rather

than a library function call that
simply transfers an un-
interpreted data.

•  provide a simple and well
understood mechanism for
managing remote
computations

content

•  High Performance Computing
•  Computer Architectures
•  Speed up
•  How to design parallel applications
•  Parallel programming models
•  Example of Parallel programs

calculations on 2-dimensional array
elements

•  The serial program calculates one element at a
time in sequential order.

•  Serial code could be of the form:

hCps://compu_ng.llnl.gov/tutorials/parallel_comp/#MemoryArch	

calculations on 2-dimensional array
elements: solution 1

•  Implement as a Single Program Multiple Data
(SPMD) model.

•  each task executes the portion of the loop
corresponding to the data it owns.

hCps://compu_ng.llnl.gov/tutorials/parallel_comp/#MemoryArch	

calculations on 2-dimensional array
elements: implementation

•  Implement as a Single Program Multiple Data
(SPMD) model.

•  Master process initializes array, sends info to
worker processes and receives results.

•  Worker process receives info, performs its share
of computation and sends results to master.

hCps://compu_ng.llnl.gov/tutorials/parallel_comp/#MemoryArch	

calculations on 2-dimensional array
elements: implementation

hCps://compu_ng.llnl.gov/tutorials/parallel_comp/#MemoryArch	

calculations on 2-dimensional array
elements: solution 2

•  Solution1: demonstrated static load balancing:
– Each task has a fixed amount of work to do
– May be significant idle time for faster or more lightly

loaded processors - slowest tasks determines overall
performance.

•  If you have a load balance problem (some tasks
work faster than others),
– you may benefit by using a "pool of tasks" scheme.

hCps://compu_ng.llnl.gov/tutorials/parallel_comp/#MemoryArch	

calculations on 2-dimensional array
elements: solution 2

•  Master Process:
– Holds pool of tasks for worker processes to do
– Sends worker a task when requested
– Collects results from workers

•  Worker Process: repeatedly does the following
– Gets task from master process
– Performs computation
– Sends results to master

calculations on 2-dimensional array
elements: solution 2

References

1.  Introduction to Parallel Computing
https://computing.llnl.gov/tutorials/parallel_comp/
#MemoryArch

2.  Intro to Parallel Programming . Lesson 2, pt. 1- Shared Memory
and threads http://www.youtube.com/watch?v=6sL4C2SwszM

3.  Intro to Parallel Programming . Lesson 2, pt. 2- Shared Memory
and threads http://www.youtube.com/watch?v=ydG8cOzJjLA

4.  Intro to Parallel Programming . Lesson 2, pt. 3- Shared Memory
and threads
http://www.youtube.com/watch?v=403LWbrA5oU

Topics	 Organizers	 Type/dura5on	
Intro to distributed sys &
BigData	

(Adam Belloum, UvA)	 Lectures/6 hours	

Introduction to Unix	
 	

(Willem Vermin, SURF SARA)	 Workshop/2 hours	

Using Lisa / Using
Cartesius	

(Willem Vermin, SURF SARA)	 Workshop/4 hours	

Using Hadoop	
	

(Machiel Jansen/ Jeroen
Schot, SURF SARA)	

Workshop/8 hours	
 	

GPU on DAS4	
 	

(Ana Varbanescu, UvA/VU)	 Workshop/4 hours	

Local and Remote
Visualisation Techniques	

(Rob Belleman, UvA)	 Workshop/4 hours	

HPC Cloud	
 	

(Markus van Dijk/ Natalie
Danezi, SURF SARA)	

Workshop/8 hours	

MPI / OpenMP	 (Clemens Grelck, UvA)	 Workshop/4 hours	

TODO (for Students)

•  Foster et al. "Cloud Computing and Grid Computing 360-
Degree Compared," Grid Computing Environments Workshop,
2008. GCE '08 , vol., no., pp.1,10, 12-16 Nov. 2008 doi: 10.1109/
GCE.2008.4738445

•  Adam Jacobs “The pathologies of big data”, Magazine
Communications of the ACM ,Vol. 52 Issue 8, Aug. 2009. doi:
10.1145/1536616.1536632

